190 research outputs found

    The young massive SMC cluster NGC 330 seen by MUSE III. Stellar parameters and rotational velocities

    Get PDF
    The origin of initial rotation rates of stars, and how a star's surface rotational velocity changes during the evolution, either by internal angular momentum transport or due to interactions with a binary companion, remain open questions in stellar astrophysics. Here, we aim to derive the physical parameters and study the distribution of (projected) rotational velocities of B-type stars in the 35 Myr-old, massive cluster NGC 330 in the Small Magellanic Cloud. NGC 330 is in an age range where the number of post-interaction binaries is predicted to be high near the cluster turnoff (TO). We develop a simultaneous photometric and spectroscopic grid-fitting method adjusting atmosphere models on multi-band Hubble Space Telescope photometry and Multi Unit Spectroscopic Explorer spectroscopy. This allows us to homogeneously constrain the physical parameters of over 250 B and Be stars, brighter than mF814W = 18.8 mag. The rotational velocities of Be stars in NGC 330 are significantly higher than the ones of B stars. The rotational velocities vary as a function of the star's position in the color-magnitude diagram, qualitatively following predictions of binary population synthesis. A comparison to younger clusters shows that stars in NGC 330 rotate more rapidly on average. The rotational velocities of the 35 Myr old population in NGC 330 quantitatively agree with predictions for a stellar population that underwent significant binary interactions: the bulk of the B stars could be single stars or primaries in pre-interaction binaries. The rapidly spinning Be stars could be mass and angular momentum gainers in previous interactions, while those Be stars close to the TO may be spun-up single stars. The slowly rotating, apparently single stars above the TO could be merger products. The different vsini-characteristics of NGC 330 compared to younger populations can be understood in this framework.Comment: 18 pages (incl. appendix), 15 figures, 3 tables, accepted for publication in A&

    Structural Analysis and Development of Notum Fragment Screening Hits

    Get PDF
    The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 ÎŒM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 ÎŒM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development

    Design of a Potent, Selective, and Brain-Penetrant Inhibitor of Wnt-Deactivating Enzyme Notum by Optimization of a Crystallographic Fragment Hit

    Get PDF
    Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    An approach to the control of disease transmission in pig-to-human xenotransplantation.

    Get PDF
    Abstract: Although several major immunologic hurdles need to be overcome, the pig is currently considered the most likely source animal of cells, tissues and organs for transplantation into humans. Concerns have been raised with regard to the potential for the transfer of infectious agents with the transplanted organ to the human recipient. This risk is perceived to be increased as it is likely that the patient will be iatrogenically immunocompromised and the organ-source pig may be genetically engineered in such a way to render its organs particularly susceptible to infection with human viruses. Furthermore, the risk may not be restricted to the recipient, but may have consequences for the health of others in the community. The identification of porcine endogenous retroviruses and of hitherto unknown viruses have given rise to the most concern. We document here the agents we believe should be excluded from the organ-source pigs. We discuss the likelihood of achieving this aim and outline the potential means by which it may best be achieved

    The Gaia-ESO Survey: homogenisation of stellar parameters and elemental abundances

    Get PDF
    The Gaia-ESO Survey is a public spectroscopic survey that has targeted ≳105\gtrsim10^5 stars covering all major components of the Milky Way from the end of 2011 to 2018, delivering its public final release in May 2022. Unlike other spectroscopic surveys, Gaia-ESO is the only survey that observed stars across all spectral types with dedicated, specialised analyses: from O (Teff∌30,000−52,000T_\mathrm{eff} \sim 30,000-52,000~K) all the way to K-M (≳\gtrsim3,500~K). The physics throughout these stellar regimes varies significantly, which has previously prohibited any detailed comparisons between stars of significantly different type. In the final data release (internal data release 6) of the Gaia-ESO Survey, we provide the final database containing a large number of products such as radial velocities, stellar parameters and elemental abundances, rotational velocity, and also, e.g., activity and accretion indicators in young stars and membership probability in star clusters for more than 114,000 stars. The spectral analysis is coordinated by a number of Working Groups (WGs) within the Survey, which specialise in the various stellar samples. Common targets are analysed across WGs to allow for comparisons (and calibrations) amongst instrumental setups and spectral types. Here we describe the procedures employed to ensure all Survey results are placed on a common scale to arrive at a single set of recommended results for all Survey collaborators to use. We also present some general quality and consistency checks performed over all Survey results.Comment: A&A accepted, minor revision, 36 pages, 38 figure

    The VLT-FLAMES Tarantula survey VIII. Multiplicity properties of the O-type star population

    Get PDF
    Context. The Tarantula Nebula in the Large Magellanic Cloud is our closest view of a starburst region and is the ideal environment to investigate important questions regarding the formation, evolution and final fate of the most massive stars. Aims. We analyze the multiplicity properties of the massive O-type star population observed through multi-epoch spectroscopy in the framework of the VLT-FLAMES Tarantula Survey. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. Methods. We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. By modeling simultaneously the observed binary fraction, the distributions of the amplitudes of the radial velocity variations and the distribution of the time scales of these variations, we constrain the intrinsic current binary fraction and period and mass-ratio distributions. Results. We observe a spectroscopic binary fraction of 0.35 ± 0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20 km s-1. We compute the intrinsic binary fraction to be 0.51 ± 0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f(log 10P/d) ~ (log 10P/d)π (with log 10P/d in the range 0.15−3.5) and f(q) ~ qÎș with 0.1 ≀ q = M2/M1 ≀ 1.0. The power-law indexes that best reproduce the observed quantities are π = −0.45 ± 0.30 and Îș = −1.0 ± 0.4. The period distribution that we obtain thus favours shorter period systems compared to an Öpik law (π = 0). The mass ratio distribution is slightly skewed towards low mass ratio systems but remains incompatible with a random sampling of a classical mass function (Îș = −2.35). The binary fraction seems mostly uniform across the field of view and independent of the spectral types and luminosity classes. The binary fraction in the outer region of the field of view (r > 7.8â€Č, i.e. ≈117 pc) and among the O9.7 I/II objects are however significantly lower than expected from statistical fluctuations. The observed and intrinsic binary fractions are also lower for the faintest objects in our sample (Ks > 15.5 mag), which results from observational effects and the fact that our O star sample is not magnitude-limited but is defined by a spectral-type cutoff. We also conclude that magnitude-limited investigations are biased towards larger binary fractions. Conclusions. Using the multiplicity properties of the O stars in the Tarantula region and simple evolutionary considerations, we estimate that over 50% of the current O star population will exchange mass with its companion within a binary system. This shows that binary interaction is greatly affecting the evolution and fate of massive stars, and must be taken into account to correctly interpret unresolved populations of massive stars

    The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products

    Get PDF
    The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100,000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper (arXiv:2206.02901) introduces the survey results. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. The Gaia-ESO Survey obtained 202,000 spectra of 115,000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022

    The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products

    Get PDF
    Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products

    The Gaia-ESO Survey: Homogenisation of stellar parameters and elemental abundances

    Get PDF
    The Gaia-ESO Survey is a public spectroscopic survey that targeted ≳105 stars covering all major components of the Milky Way from the end of 2011 to 2018, delivering its final public release in May 2022. Unlike other spectroscopic surveys, Gaia-ESO is the only survey that observed stars across all spectral types with dedicated, specialised analyses: from O (Teff ~ 30 000–52 000 K) all the way to K-M (≳3500 K). The physics throughout these stellar regimes varies significantly, which has previously prohibited any detailed comparisons between stars of significantly different types. In the final data release (internal data release 6) of the Gaia-ESO Survey, we provide the final database containing a large number of products, such as radial velocities, stellar parameters and elemental abundances, rotational velocity, and also, for example, activity and accretion indicators in young stars and membership probability in star clusters for more than 114 000 stars. The spectral analysis is coordinated by a number of working groups (WGs) within the survey, each specialised in one or more of the various stellar samples. Common targets are analysed across WGs to allow for comparisons (and calibrations) amongst instrumental setups and spectral types. Here we describe the procedures employed to ensure all survey results are placed on a common scale in order to arrive at a single set of recommended results for use by all survey collaborators. We also present some general quality and consistency checks performed on the entirety of the survey results.This work was partly supported by the European Union FP7 programme through ERC grant number 320360 and by the Leverhulme Trust through grant RPG-2012-541. We acknowledge the support from INAF and Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca (MIUR) in the form of the grant “Premiale VLT 2012”. L. Magrini and M. Van der Swaelmen acknowledge support by the WEAVE Italian consortium, and by the INAF Grant “Checs”. A.J. Korn acknowledges support by the Swedish National Space Agency (SNSA). A. Lobel acknowledges support in part by the Belgian Federal Science Policy Office under contract no. BR/143/A2/BRASS and by the European Union Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie grant Agreement No. 823734. D.K. Feuillet was partly supported by grant no. 2016-03412 from the Swedish Research Council. D. Montes acknowledges financial support from the Agencia Estatal de Investigacion of the Ministerio de Ciencia, Innovation through project PID2019-109522GB-C54 /AEI/10.13039/501100011033. E. Marfil acknowledges financial support from the European Regional Development Fund (ERDF) and the Gobierno de Canarias through project ProID2021010128. J.I. Gonzalez Hernandez acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) project PID2020-117493GB-I00. M. Bergemann is supported through the Lise Meitner grant from the Max Planck Society and acknowledges support by the Collaborative Research centre SFB 881 (projects A5, A10), Heidelberg University, of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). This project has received funding from the European Research Council (ERC) under the European Union, Horizon 2020 research and innovation programme (Grant agreement No. 949173). P. JofrĂ© acknowledges financial support of FONDECYT Regular 1200703 as well as Nucleo Mile-nio ERIS NCN2021_017. R. Smiljanic acknowledges support from the National Science Centre, Poland (2014/15/B/ST/03981). S.R. Berlanas acknowledges support by MCIN/AEI/10.13039/501100011033 (contract FJC 2020-045785-I) and NextGeneration EU/PRTR and MIU (UNI/551/2021) through grant Margarita Salas-ULL. T. Bensby acknowledges financial support by grant No. 2018-04857 from the Swedish Research Council. T. Merle is supported by a grant from the Foundation ULB. T. Morel are grateful to Belgian F.R.S.-FNRS for support, and are also indebted for an ESA/PRODEX Belspo contract related to the Gaia Data Processing and Analysis Consortium and for support through an ARC grant for Concerted Research Actions financed by the Federation Wallonie-Brussels. W. Santos acknowledges FAPERJ for a Ph.D. fellowship. H.M. Tabernero acknowledges financial support from the Agencia Estatal de Investigation of the Ministerio de Ciencia, Innovation through project PID2019-109522GB-C51/AEI/10.13039/501100011033
    • 

    corecore