2,806 research outputs found

    Google Play apps ERM: (energy rating model) multi-criteria evaluation model to generate tentative energy ratings for Google Play store apps

    Get PDF
    A common issue that is shared among Android smartphones users was and still related to saving their batteries power and to avoid the need of using any recharging resources. The tremendous increase in smartphone usage is clearly accompanied by an increase in the need for more energy. This preoperational relationship between modern technology and energy generates energy-greedy apps, and therefore power-hungry end users. With many apps falling under the same category in an app store, these apps usually share similar functionality. Because developers follow different design and development schools, each app has its own energy-consumption habits. Since apps share similar features, an end-user with limited access to recharging resources would prefer an energy-friendly app rather than a popular energy-greedy app. However, app stores give no indication about the energy behaviour of the apps they offer, which causes users to randomly choose apps without understanding their energy-consumption behaviour. Furthermore, with regard to the research questions about the fact that power saving application consumes a lot of electricity, past studies clearly indicate that there is a lot of battery depletion due to several factors. This problem has become a major concern for smartphone users and manufacturers. The main contribution of our research is to design a tool that can act as an effective decision support factor for end users to have an initial indication of the energy-consumption behaviour of an application before installing it. The core idea of the “before-installation” philosophy is simplified by the contradicting concept of installing the app and then having it monitored and optimized. Since processing requires power, avoiding the consumption of some power in order to conserve a larger amount of power should be our priority. So instead, we propose a preventive strategy that requires no processing on any layer of the smartphone. To address this issue, we propose a star-rating evaluation model (SREM), an approach that generates a tentative energy rating label for each app. To that end, SREM adapts current energy-aware refactoring tools to demonstrate the level of energy consumption of an app and presents it in a star-rating schema similar to the Ecolabels used on electrical home appliances. The SREM will also inspire developers and app providers to come up with multiple energy-greedy versions of the same app in order to suit the needs of different categories of users and rate their own apps. We proposed adding SREM to Google Play store in order to generate the energy-efficiency label for each app which will act as a guide for both end users and developers without running any processes on the end-users smartphone. Our research also reviews relevant existing literature specifically those covering various energy-saving techniques and tools proposed by various authors for Android smartphones. A secondary analysis has been done by evaluating the past research papers and surveys that has been done to assess the perception of the users regarding the phone power from their battery. In addition, the research highlights an issue that the notifications regarding the power saving shown on the screen seems to exploit a lot of battery. Therefore, this study has been done to reflect the ways that could help the users to save the phone battery without using any power from the same battery in an efficient manner. The research offers an insight into new ways that could be used to more effectively conserve smartphone energy, proposing a framework that involves end users on the process.Um problema comum entre utilizadores de smartphones Android tem sido a necessidade de economizar a energia das baterias, de modo a evitar a utilização de recursos de recarga. O aumento significativo no uso de smartphones tem sido acompanhado por um aumento, também significativo, na necessidade de mais energia. Esta relação operacional entre tecnologia moderna e energia gera aplicações muito exigentes no seu consumo de energia e, portanto, perfis de utilizadores que requerem níveis de energia crescentes. Com muitos das aplicações que se enquadram numa mesma categoria da loja de aplicações (Google Store), essas aplicações geralmente também partilham funcionalidades semelhantes. Como os criadores destas aplicações seguem abordagens diferentes de diversas escolas de design e desenvolvimento, cada aplicação possui as suas próprias caraterísticas de consumo de energia. Como as aplicações partilham recursos semelhantes, um utilizador final com acesso limitado a recursos de recarga prefere uma aplicação que consome menos energia do que uma aplicação mais exigente em termos de consumo energético, ainda que seja popular. No entanto, as lojas de aplicações não fornecem uma indicação sobre o comportamento energético das aplicações oferecidas, o que faz com que os utilizadores escolham aleatoriamente as suas aplicações sem entenderem o correspondente comportamento de consumo de energia. Adicionalmente, no que diz respeito à questão de investigação, a solução de uma aplicação de economia de energia consume muita eletricidade, o que a torna limitada; estudos anteriores indicam claramente que há muita perda de bateria devido a vários fatores, não constituindo solução para muitos utilizadores e para os fabricantes de smartphones. A principal contribuição de nossa pesquisa é projetar uma ferramenta que possa atuar como um fator de suporte à decisão eficaz para que os utilizadores finais tenham uma indicação inicial do comportamento de consumo de energia de uma aplicação, antes de a instalar. A ideia central da filosofia proposta é a de atuar "antes da instalação", evitando assim a situação em se instala uma aplicação para perceber à posteriori o seu impacto no consumo energético e depois ter que o monitorizar e otimizar (talvez ainda recorrendo a uma aplicação de monitorização do consumo da bateria, o que agrava ainda mais o consumo energético). Assim, como o processamento requer energia, é nossa prioridade evitar o consumo de alguma energia para conservar uma quantidade maior de energia. Portanto, é proposta uma estratégia preventiva que não requer processamento em nenhuma camada do smartphone. Para resolver este problema, é proposto um modelo de avaliação por classificação baseado em níveis e identificado por estrelas (SREM). Esta abordagem gera uma etiqueta de classificação energética provisória para cada aplicação. Para isso, o SREM adapta as atuais ferramentas de refatoração com reconhecimento de energia para demonstrar o nível de consumo de energia de uma aplicação, apresentando o resultado num esquema de classificação por estrelas semelhante ao dos rótulos ecológicos usados em eletrodomésticos. O SREM também se propõe influenciar quem desenvolve e produz as aplicações, a criarem diferentes versões destas, com diferentes perfis de consumo energético, de modo a atender às necessidades de diferentes categorias de utilizadores e assim classificar as suas próprias aplicações. Para avaliar a eficiência do modelo como um complemento às aplicações da loja Google Play, que atuam como uma rotulagem para orientação dos utilizadores finais. A investigação também analisa a literatura existente relevante, especificamente a que abrange as várias técnicas e ferramentas de economia de energia, propostas para smartphones Android. Uma análise secundária foi ainda realizada, focando nos trabalhos de pesquisa que avaliam a perceção dos utilizadores em relação à energia do dispositivo, a partir da bateria. Em complemento, a pesquisa destaca um problema de que as notificações sobre a economia de energia mostradas na tela parecem explorar muita bateria. Este estudo permitiu refletir sobre as formas que podem auxiliar os utilizadores a economizar a bateria do telefone sem usar energia da mesma bateria e, mesmo assim, o poderem fazer de maneira eficiente. A pesquisa oferece uma visão global das alternativas que podem ser usadas para conservar com mais eficiência a energia do smartphone, propondo um modelo que envolve os utilizadores finais no processo.Un problème fréquent rencontré par les utilisateurs de smartphones Android a été, tout en l’étant toujours, d’économiser leur batterie et d’éviter la nécessité d’utiliser des ressources de recharge. La croissance considérable de l’utilisation des smartphones s’accompagne clairement d’une augmentation des besoins en énergie. Cette relation préopérationnelle entre la technologie moderne et l’énergie génère des applications gourmandes en énergie, et donc des utilisateurs finaux qui le sont tout autant. De nombreuses applications relevant de la même catégorie dans une boutique partagent généralement des fonctionnalités similaires. Étant donné que les développeurs adoptent différentes approches de conception et de développement, chaque application a ses propres caractéristiques de consommation d’énergie. Comme les applications partagent des fonctionnalités similaires, un utilisateur final disposant d’un accès limité aux ressources de recharge préférerait une application écoénergétique plutôt qu’une autre gourmande en énergie. Cependant, les boutiques d’applications ne donnent aucune indication sur le comportement énergétique des applications qu’elles proposent, ce qui incite les utilisateurs à choisir des applications au hasard sans comprendre leurs caractéristiques en ce domaine. En outre, en ce qui concerne les questions de recherche sur le fait que les applications d’économie d’énergie consomment beaucoup d’électricité, des études antérieures indiquent clairement que la décharge d’une batterie est due à plusieurs facteurs. Ce problème est devenu une préoccupation majeure pour les utilisateurs et les fabricants de smartphones. La principale contribution de notre étude est de concevoir un outil qui peut agir comme un facteur d’aide efficace à la décision pour que les utilisateurs finaux aient une indication initiale du comportement de consommation d’énergie d’une application avant de l’installer. L’idée de base de la philosophie « avant l’installation » est simplifiée par le concept contradictoire d’installer l’application pour ensuite la contrôler et l’optimiser. Puisque les opérations de traitement exigent de l’énergie, éviter la consommation d’une partie d’entre elles pour l’économiser devrait être notre priorité. Nous proposons donc une stratégie préventive qui ne nécessite aucun traitement sur une couche quelconque du smartphone. Pour résoudre ce problème, nous proposons un modèle d’évaluation au moyen d’étoiles (star-rating evaluation model ou SREM), une approche qui génère une note énergétique indicative pour chaque application. À cette fin, le SREM adapte les outils actuels de refactoring sensibles à l’énergie pour démontrer le niveau de consommation d’énergie d’une application et la présente dans un schéma de classement par étoiles similaire aux labels écologiques utilisés sur les appareils électroménagers. Le SREM incitera également les développeurs et les fournisseurs d’applications à mettre au point plusieurs versions avides d’énergie d’une même application afin de répondre aux besoins des différentes catégories d’utilisateurs et d’évaluer leurs propres applications. Nous avons proposé d’ajouter le SREM au Google Play Store afin de générer le label d’efficacité énergétique pour chaque application. Celui-ci servira de guide à la fois pour les utilisateurs finaux et les développeurs sans exécuter de processus sur le smartphone des utilisateurs finaux. Notre recherche passe également en revue la littérature existante pertinente, en particulier celle qui couvre divers outils et techniques d’économie d’énergie proposés par divers auteurs pour les smartphones Android. Une analyse secondaire a été effectuée en évaluant les documents de recherche et les enquêtes antérieurs qui ont été réalisés pour évaluer la perception des utilisateurs concernant l’alimentation téléphonique depuis leur batterie. En outre, l’étude met en évidence un problème selon lequel les notifications concernant les économies d’énergie affichées à l’écran semblent elles-mêmes soumettre les batteries à une forte utilisation. Par conséquent, cette étude a été entreprise pour refléter les façons qui pourraient aider les utilisateurs à économiser efficacement la batterie de leur téléphone sans pour autant la décharger. L’étude offre un bon aperçu des nouvelles façons d’économiser plus efficacement l’énergie des smartphones, en proposant un cadre qui implique les utilisateurs finaux dans le processus

    THE IMPACT OF THE WIKI-ENHANCED TBLT APPROACH ON HIGH SCHOOL STUDENTS’ WRITING SKILL IN A BOYS’ PUBLIC SCHOOL IN AL AIN, UAE

    Get PDF
    This study investigated the impact of the wiki-enhanced task-based language teaching (TBLT) approach on students’ writing skill in the context of English as a foreign language (EFL) in the United Arab Emirates (UAE). In addition, it explored the students’ and teacher’s views and perceptions toward the implementation of the wiki-enhanced TBLT approach. The study data were collected quantitatively and qualitatively from two classrooms in a public high school in the UAE, which consisted of 30 students. The quantitative data were collected via a pretest–posttest design from the two assigned groups of students: the control and experimental groups. The qualitative data were collected via a survey of the students and a semi-structured interview with the teacher. The study was conducted during a whole academic semester. The findings of the study show that implementing the wiki-enhanced TBLT technique considerably improves EFL learners’ writing skills in relation to the four language components examined in this study: syntactic complexity, grammatical accuracy, fluency, and lexical complexity. In addition, the students enjoyed working together on writing tasks using the wiki-enhanced TBLT approach. Their responses showed that the TBLT approach encourages better performance in collaborative writing tasks and classroom engagement. Moreover, the classroom teachers indicated that the implementation of this approach played a significant role in promoting students’ performance, communication, collaboration, and engagement in the target language (English) in the experimental group. Furthermore, the findings showed that students can construct new knowledge with the aid of their peers, thereby improving their capacity to devise and discuss original ideas. As students can practice collaborative writing while at home, the wiki-enhanced TBLT approach is beneficial for online learning. Adopting this approach increased students’ participation in class because they were more comfortable working together while using technology, improving the quality of their writing and assignments. Several theoretical and pedagogical implications regarding the implementation of this approach have been drawn. The first theoretical implication of this study is that the wiki approach supports previous efforts to move the socio constructivist perspective of learning from the spoken discourse to the written discourse. The second theoretical implication is that it provides support to Chapelle\u27s framework (2003) where learning should be focused on tasks that require the use of the target language. Learning should take place in meaningful and real-life contexts, and instruction should be tailored to the individual needs of the learner. The third theoretical implication is that his study is the first to be conducted in the Gulf region, especially in the UAE. Regarding the pedagogical implications of the TBLT approach, the first pedagogical implication is that teachers need to consider the wiki-enhanced TBLT approach a standard and favored classroom strategy. The second pedagogical implication is that the wiki approach can be used by teachers as a teaching strategy to promote students’ participation and engagement and create a friendly social environment in the L2 classroom. The third pedagogical implication is that technology has proved to be integral in the classroom in teaching and learning the target language. The fourth pedagogical implication is for course designers who need to consider the wiki-enhanced TBLT approach as part of the curriculum. Based on these findings, future research can consider examining the effect of the wiki-enhanced TBLT approach on EFL learners’ writing skill at different levels, such as primary, college, or university students. Future research might also investigate the effect of Google Docs–based TBLT approach on developing students’ writing skill and explore students’ perceptions toward using this approach

    The Kumaraswamy Generalized Power Weibull Distribution

    Get PDF
    A new family of distributions called Kumaraswamy-generalized power Weibull (Kgpw) distribution is proposed and studied. This family has a number of well known sub-models such as Weibull, exponentiated Weibull, Kumaraswamy Weibull, generalized power Weibull and new sub-models, namely, exponentiated generalized power Weibull, Kumaraswamy generalized power exponential distributions.  Some statistical properties of the new distribution include its moments, moment generating function, quantile function and hazard function are derived. In addition, maximum likelihood estimates of the model parameters are obtained. An application as well as comparisons of the Kgpw and its sub-distributions is given.   Keywords: Generalized power Weibull distribution, Kumaraswamy distribution, Maximum likelihood estimation, Moment generating function, Hazard rate function.

    Doctor of Philosophy

    Get PDF
    dissertationMyocardial microstructure plays an important role in sustaining the orchestrated beating motion of the heart. Several microstructural components, including myocytes and auxiliary cells, extracellular space, and blood vessels provide the infrastructure for normal heart function, including excitation propagation, myocyte contraction, delivery of oxygen and nutrients, and removing byproduct wastes. Cardiac diseases cause deleterious changes to some or all of these microstructural components in the detrimental process of cardiac remodeling. Since heart failure is among the leading causes of death in the world, new and novel tools to noninvasively characterize heart microstructure are needed for monitoring and staging of cardiac disease. In this regards, diffusion magnetic resonance imaging (MRI) provides a promising framework to probe and quantify tissue microstructure without the need for exogenous contrast agent. As diffusion in 3-dimensional space is characterized by the diffusion tensor, MR diffusion tensor imaging (DTI) is being used to noninvasively measure anisotropic diffusion, and thus the magnitude and spatial orientation of microstructural organization of tissues, including the heart. However, even though in vivo cardiac DTI has become more clinically available, to date the origin and behavior of different microstructural components on the measured DTI signal remain to be explicitly specified. The presented studies in this work demonstrate that DTI can be used as a noninvasive and contrast-free imaging modality to characterize myocyte size and density, extracellular collagen content, and the directional magnitude of blood flow. The identified applications are expected to provide metrics to enable physicians to detect, quantify, and stage different microstructural components during progression of cardiac disease

    Determination of Water Demand Management in GCC Using GIS

    Get PDF
    Arab GCC((Gulf Corporation Councel) is facing potential water shortages. The alarming increase in the scarcity of water in various parts of the world. Water is a main issue in many countries especially in those GCC, it has focused a global attention on the need for a stronger and more appropriate water resource management and availability solutions. imperative for nations to come up with more focused and direct measures that would address and stem this resource scarcity. Water sustainability needs a balance between demand and availability. The main objective of this paper is the application of these concepts to Arabs countries. Water demand management is about achieving a reduction in the use of water resources, normally through increased efficiency of water application. The management of water resources was not explicitly included in the past from thirty-five years in all most of those countries normative system partly because water was believed to be a free good in mind, and was not accepted to have a price to pay to use it. The main goal of this paper is showing, how Geographical Information Systems (GIS ) using ESRI (Environmental System Research Institute)  or ArcGIS 10.2 product , can be used to support infrastructure planners and analyst on water demand of a local area in GCC (Gulf Corporation Councel ) they are (Saudi Arabia ,Kuwait, Bahrain, Oman  and UAE). Keywords: GIS, Water in land, Water area, XML Schema ESRI, ArcGIS ,GCC , DIVA-GI

    Multi-criteria evaluation model to generate tentative energy ratings for Google Play Store Apps

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Star-rating evaluation model for rating the energy-efficiency level of android google play apps

    Get PDF
    The tremendous increase in smartphone usage is accompanied by an increase in the need for more energy. This preoperational relationship between modern technology and energy generates energy-greedy apps, and therefore power-hungry end users. With many apps falling under the same category in an app store, these apps usually share similar functionality. Because developers follow different design and development schools, each app has its energy-consumption habits. Since apps share similar features, an end-user with limited access to recharging resources would prefer an energy-friendly app rather than a popular energy-greedy app. However, app stores do not indicate the energy behavior of the apps they offer, which causes users to randomly choose apps without understanding their energy-consumption behavior. A review of the relevant literature was provided covering various energy-saving techniques. The results gave an initial impression about the popularity of the usage of two power-saving modes where the average usage of these modes did not exceed 31% among the total 443 Android users. To address this issue, we propose a star-rating evaluation model (SREM), an approach that generates a tentative energy rating label for each app. The model was tested on 7 open-source apps to act as a primary evaluation sample. To that end, SREM adapts current energy-aware refactoring tools to demonstrate the level of energy consumption of an app and presents it in a star-rating schema similar to the Ecolabels used on electrical home appliances. As per our results, SREM helped in saving 35% of smartphone energy

    The evolution of energy requirements of smartphones based on user behaviour and implications of the COVID-19 era

    Get PDF
    Smartphones have evolved to become frequent companions to humans. The common problem shared by Android users of smartphones was, and continues to be, about saving their batteries and preventing the need to use any recharging tools. A significant number of studies have been performed in the general field of "saving energy in smartphones". During a state of global lockdown, the use of smartphone devices has skyrocketed, and many governments have implemented location-tracking applications for their citizens as means of ensuring that the imposed governmental restrictions are being adhered to. Since smartphones are battery-powered, the opportunity to conserve electricity and ensure that the handset does not have to be charged so much or that it does not die and impede location-tracking during this period of crisis is of vital significance, impacting not only the reliability of tracking, but also the usability of the mobile itself. While there are methods to reduce the battery’s drain from mobile app use, they are not fully utilized by users. Simultaneously, the following the manuscript demonstrates the growing prevalence of mobile applications in daily lives, as well as the disproportionally increasing phone functionality, which results in the creation of a dependency towards smartphone use and the need of energy to recharge and operate theses smartphones

    Analysis and Design of Spirally Welded Thin-Walled Steel Tapered Cylindrical Shells Under Bending with Application to Wind Turbine Towers

    Get PDF
    An important obstacle restricting the growth of wind-generated energy is the production of taller towers for wind turbines that can harvest energy from the steadier, stronger winds at higher elevations. Currently, the need to transport wind turbine tower sections to the construction site constrains the diameter of the section, which then limits the height of the tower. This limitation can be avoided if the tower sections are made on-site, and one potential method for on-site manufacturing is automated spiral welding. This thesis, which focuses largely on computational modeling for design, is part of a larger research effort to advance the application of spirally welded tubes (SWTs) in wind tower structures. With the new manufacturing technique, a wider range of tower diameters and thicknesses, and potentially more optimal thin-walled sections can be employed. Thin-walled shells are one of the most advanced and efficient forms of large structures; however, their behavior can be unstable and extremely sensitive to imperfections. For decades, the structural design of such shell structures relied on elastic buckling “knockdown factors” obtained from experimental results, but with the expansion in the capabilities of computational modeling, today design is working to leverage the power of shell finite element models that are geometrically and materially nonlinear with imperfections included (i.e. “GMNIA” analysis models). This thesis explores the analysis and design of spirally welded tapered cylindrical steel shells and complements experimental results conducted as a companion to this effort within the larger SWT effort. The thesis includes an introduction and historical background on the development of research on thin shells; a summary of relevant experimental work completed in the literature and in the SWT project; careful examination of geometric imperfections in the world of shells in general and spirally welded shells in particular; provides a practical finite element modeling protocol for predicting the flexural strength and collapse behavior of thin-walled spirally welded tapered steel tubes; validates the proposed modeling protocols for GMNIA models with SWT test results; extends the results to provide standard “reference resistance” curves that can be used for future GMNIA analyses by structural designers; and highlights the application to an archetype 3MW wind turbine tower using both classical and new analysis-based
    • …
    corecore