197 research outputs found

    Agronomic biofortification with zinc and iron to enhance nutrient concentrations in mango

    Get PDF
    Biofortification is a global-scale agricultural approach that can improve human nutrition. Agronomic biofortification is viewed as a quick-fix and supplemental approach. Agronomic biofortification, especially foliar application, is highly effective for zinc and iron. A field experiment on agronomic biofortification of zinc and iron micronutrients in mango cv. Kesar was carried out in 2016-2017 at the Regional Horticultural Research Station, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari (Gujarat). The experiment was arranged in a completely randomized design (CRD) with three replications containing 9 treatments. The results show that foliar application of ZnSO4 and FeSO4 (0.5% each) resulted in higher N (48.73 mg/100 g) and K (94.17 mg/100 g) in the pulp and P (0.056%) in the peel of mango. The iron (Fe) and zinc (Zn) contents in pulp and peel were highest in treatment T9 (0.50% FeSO4 + 0.50% ZnSO4), which was on par with those in treatment T8 (0.50% FeSO4 + 0.25% ZnSO4)

    Cryoballoon pulmonary vein isolation as first-line treatment of typical atrial flutter: long-term outcomes of the CRAFT trial

    Get PDF
    \ua9 The Author(s) 2024.Background: CRAFT was an international, multicentre, randomised controlled trial across 11 sites in the United UK and Switzerland. Given the evidence that pulmonary vein triggers may be responsible for atrial flutter (AFL) as well as atrial fibrillation (AF), we hypothesised that cryoballoon pulmonary vein isolation (PVI) would provide greater symptomatic arrhythmia reduction than cavotricuspid isthmus (CTI) ablation, whilst also reducing the subsequent burden of AF. Twelve-month outcomes were previously reported. In this study, we report the extended outcomes of the CRAFT study to 36 months. Methods: Patients with typical AFL and no evidence of AF were randomised 1:1 to cryoballoon PVI or radiofrequency CTI. All patients received an implantable loop recorder (ILR) for continuous cardiac rhythm monitoring. The primary outcome was time-to-symptomatic arrhythmia recurrence > 30 s. Secondary outcomes included time-to-first-AF episode ≄ 2 min. The composite safety outcome included death, stroke and procedural complications. Results: A total of 113 patients were randomised to cryoballoon PVI (n = 54) or radiofrequency CTI ablation (n = 59). Ninety-one patients reconsented for extended follow-up beyond 12 months. There was no difference in the primary outcome between arms, with the primary outcome occurring in 12 PVI vs 11 CTI patients (HR 0.97; 95% CI 0.43–2.20; p = 0.994). AF ≄ 2 min was significantly less frequent in the PVI arm, affecting 26 PVI vs 36 CTI patients (HR 0.48; 95% CI 0.29–0.79; p = 0.004). The composite safety outcome occurred in 5 PVI and 6 CTI patients (p = 0.755). Conclusion: Cryoballoon PVI shows similar efficacy to radiofrequency CTI ablation in reducing symptomatic arrhythmia recurrence in patients presenting with isolated typical AFL but significantly reduces the occurrence of subsequent AF. Graphical Abstract: (Figure presented.)

    Fully Automated Electrophysiological Model Personalisation Framework from CT Imaging

    Get PDF
    International audienceThere has been a recent growing interest for cardiac computed tomography (CT) imaging in the electrophysiological community. This imaging modality indeed allows to locate and assess post-infarct scar heterogeneity, allowing to predict zones of abnormal electrical activity and even personalise EP models. To this end, most of the literature uses manually segmented CT images where one fundamental information is extracted, the myocardial wall thickness. In this paper, we evaluate the impact of using an automated deep learning (DL) methodology to segment the left ventricular wall and extract relevant scar information on the resulting personalised models. Using CT images from 8 patients that were not used during the DL training, we show that the automated segmentation is very similar to the manual one (median Dice score: 0.9). Thickness information obtained this way is also very close to the manual one (median difference: 0.7 mm). A wavefront propagation model personalisation framework based on this thickness information does not show relevant differences in its output (median difference in local activation time: 2 ms), proving its robustness. Bipolar electrograms, simulated through a novel approach, do not differ significantly between manual and automated segmentations (Pearson's r: 0.99)

    A genome-wide DNA methylation signature for SETD1B-related syndrome

    Get PDF
    SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients

    A genome-wide DNA methylation signature for SETD1B-related syndrome

    Get PDF
    SETD1B is a component of a histone methyltransferase complex that specifically methylates Lys-4 of histone H3 (H3K4) and is responsible for the epigenetic control of chromatin structure and gene expression. De novo microdeletions encompassing this gene as well as de novo missense mutations were previously linked to syndromic intellectual disability (ID). Here, we identify a specific hypermethylation signature associated with loss of function mutations in the SETD1B gene which may be used as an epigenetic marker supporting the diagnosis of syndromic SETD1B-related diseases. We demonstrate the clinical utility of this unique epi-signature by reclassifying previously identified SETD1B VUS (variant of uncertain significance) in two patients

    Pseudomonas aeruginosa Induced Airway Epithelial Injury Drives Fibroblast Activation:A Mechanism in Chronic Lung Allograft Dysfunction

    Get PDF
    Bacterial infections after lung transplantation cause airway epithelial injury and are associated with an increased risk of developing bronchiolitis obliterans syndrome. The damaged epithelium is a source of alarmins that activate the innate immune system, yet their ability to activate fibroblasts in the development of bronchiolitis obliterans syndrome has not been evaluated. Two epithelial alarmins were measured longitudinally in bronchoalveolar lavages from lung transplant recipients who developed bronchiolitis obliterans syndrome and were compared to stable controls. In addition, conditioned media from human airway epithelial cells infected with Pseudomonas aeruginosa was applied to lung fibroblasts and inflammatory responses were determined. Interleukin‐1 alpha (IL‐1α) was increased in bronchoalveolar lavage of lung transplant recipients growing P. aeruginosa (11.5 [5.4–21.8] vs. 2.8 [0.9–9.4] pg/mL, p < 0.01) and was significantly elevated within 3 months of developing bronchiolitis obliterans syndrome (8.3 [1.4–25.1] vs. 3.6 [0.6–17.1] pg/mL, p < 0.01), whereas high mobility group protein B1 remained unchanged. IL‐1α positively correlated with elevated bronchoalveolar lavage IL‐8 levels (r(2) = 0.6095, p < 0.0001) and neutrophil percentage (r(2) = 0.25, p = 0.01). Conditioned media from P. aeruginosa infected epithelial cells induced a potent pro‐inflammatory phenotype in fibroblasts via an IL‐1α/IL‐1R‐dependent signaling pathway. In conclusion, we propose that IL‐1α may be a novel therapeutic target to limit Pseudomonas associated allograft injury after lung transplantation
    • 

    corecore