48 research outputs found

    Global lessons from successful rhinoceros conservation in Nepal

    Get PDF
    Global populations of rhinoceros have declined alarmingly, from about 500,000 at the beginning of the 20th century to 29,000 in 2016, largely due to an escalation of poaching for rhinoceros horn (Traffic 2016; Biggs et al. 2013). The current global rhino population is comprised of three Asian Species and two African species, the latter located in South Africa, Kenya, Tanzania, Namibia and Zimbabwe,. In Africa, the Southern white rhinoceros population is estimated at 20,700; and there are estimated to be around 4,885 black rhinoceros. The greater one-horned rhinoceros, found in Nepal and India, has a population of approximately 3,555. The other Asian rhino species are confined to Indonesia and have much lower numbers; there are fewer than 100 Sumatran rhinos and only 58–61 Javan rhinos. The number of African rhino killed by poachers in the last ten years is estimated at 5,957 (Traffic 2016; Emslie et al. 2013; Poaching fact2016), about 1,338 of these were taken in 2015, a year in which the highest number of rhino were taken since the late 1980s (Traffic 2016; Gaworecki 2016; Figure 1). At current poaching rates, Africa’s rhino populations may be extinct within 20 years (Di Minin et al. 2015). The Sumatran and Javan rhino populations continue to decline due to habitat destruction, poaching and inbreeding (Save the Rhino, 2016b) pushing them to the verge of extinction

    Ancient Himalayan wolf (Canis lupus chanco) lineage in Upper Mustang of the Annapurna Conservation Area, Nepal

    Get PDF
    The taxonomic status of the wolf (Canis lupus) in Nepal’s Trans-Himalaya is poorly understood. Recent genetic studies have revealed the existence of three lineages of wolves in the Indian sub-continent. Of these, the Himalayan wolf, Canis lupus chanco, has been reported to be the most ancient lineage historically distributed within the Nepal Himalaya. These wolves residing in the Trans-Himalayan region have been suggested to be smaller and very different from the European wolf. During October 2011, six fecal samples suspected to have originated from wolves were collected from Upper Mustang in the Annapurna Conservation Area of Nepal. DNA extraction and amplification of the mitochondrial (mt) control region (CR) locus yielded sequences from five out of six samples. One sample matched domestic dog sequences in GenBank, while the remaining four samples were aligned within the monophyletic and ancient Himalayan wolf clade. These four sequences which matched each other, were new and represented a novel Himalayan wolf haplotype. This result confirms that the endangered ancient Himalayan wolf is extant in Nepal. Detailed genomic study covering Nepal’s entire Himalayan landscape is recommended in order to understand their distribution, taxonomy and, genetic relatedness with other wolves potentially sharing the same landscape

    Is trophy hunting of bharal (blue sheep) and Himalayan tahr contributing to their conservation in Nepal?

    Get PDF
    Dhorpatan Hunting Reserve (DHR), the only hunting reserve in Nepal, is famous for trophy hunting of bharal or ‘blue sheep’ (Pseudois nayaur) and Himalayan tahr (Hemitragus jemlahicus). Although trophy hunting has been occurring in DHR since 1987, its ecological consequences are poorly known. We assessed the ecological consequences of bharal and Himalayan tahr hunting in DHR, and estimated the economic contribution of hunting to the government and local communities based on the revenue data. The bharal population increased significantly from 1990 to 2011, but the sex ratio became skewed from male-biased (129 Male:100 Female) in 1990 to female-biased (82 Male:100 Female) in 2011. Similarly, a recent survey of Himalayan tahr showed that there was a total population of 285 tahr with a sex ratio of 60 Male: 100 Female. Bharal and Himalayan tahr trophy hunting has generated economic benefits through generation of local employment and direct income of 364072duringthelastfiveyears.Governmentrevenuecollectedfrom2007−08to2011−12totalled364072 during the last five years. Government revenue collected from 2007-08 to 2011-12 totalled 184372. Male-focused trophy hunting as practiced in DHR may not be an ecologically sustainable practice, because its effect on the sex ratio that lead to negative consequences for the genetic structure of the population in the long term. Therefore, the population dynamics and sex ratios of the bharal and tahr must be considered while setting harvest quotas

    Predicting the potential distribution and habitat variables associated with pangolins in Nepal

    Get PDF
    Pangolins are highly-threatened due to illegal hunting and poaching, and by the loss, degradation, and fragmentation of their habitats. In Nepal, effective conservation actions for pangolins are scarce due to limited information on the distribution of pangolins in many areas of the country. To identify the nationwide distribution of pangolins in Nepal, and assess the environmental variables associated with their habitat, we conducted an extensive literature review to collate data from previous studies, canvassed information from key informant interviews and expert opinion, and conducted transect surveys and sign surveys. The occurrence of pangolins was recorded based on sightings and indirect signs (such as burrows, digs, tracks, and scats) along 115 belt transects of 500-m length with a fixed width of 50-m, and habitat parameters were surveyed using 347 quadrats of 10 m*10 m. Pangolin presence was confirmed from 61 out of 75 districts from the eastern to the far western parts of the country. The highest frequency of burrows (74%) was observed in the forested habitat constituting brown soil with medium texture (0.02–2 mm) within an elevation range of 500–1500 m above sea level. Logistic regression suggested that the occurrence of pangolin was highly influenced by ground cover and canopy cover of 50–75%, litter depth, and the distance to termite mounds and roads. We used 4136 occurrence GPS points of pangolin burrows that were compiled and collected from the literature review and field surveys in order to predict the potential habitat distribution of pangolin using maximum entropy algorithm (MaxEnt 3.4.1). The model predicted 15.2% (22,393 km2) of the total land of Nepal as potentially suitable habitat for pangolin, with 38.3% (8574 km2) of potential habitat in the eastern region, followed by 37.6% (8432 km2) in the central and 24.1% (5,387 km2) in the western regions. The results of this study present a national baseline for pangolin distribution and serve as an important document for developing and executing conservation actions and management plans for the long-term conservation of pangolins in Nepal

    Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The endangered snow leopard is found throughout major mountain ranges of Central Asia, including the remote Himalayas. However, because of their elusive behavior, sparse distribution, and poor access to their habitat, there is a lack of reliable information on their population status and demography, particularly in Nepal. Therefore, we utilized noninvasive genetic techniques to conduct a preliminary snow leopard survey in two protected areas of Nepal.</p> <p>Results</p> <p>A total of 71 putative snow leopard scats were collected and analyzed from two different areas; Shey Phoksundo National Park (SPNP) in the west and Kangchanjunga Conservation Area (KCA) in the east. Nineteen (27%) scats were genetically identified as snow leopards, and 10 (53%) of these were successfully genotyped at 6 microsatellite loci. Two samples showed identical genotype profiles indicating a total of 9 individual snow leopards. Four individual snow leopards were identified in SPNP (1 male and 3 females) and five (2 males and 3 females) in KCA.</p> <p>Conclusions</p> <p>We were able to confirm the occurrence of snow leopards in both study areas and determine the minimum number present. This information can be used to design more in-depth population surveys that will enable estimation of snow leopard population abundance at these sites.</p

    Nature and extent of human–elephant Elephas maximus conflict in central Nepal

    No full text
    Human-elephant conflict is one of the main threats to the long-term survival of the Asian elephant Elephas maximus. We studied the nature and extent of human-elephant interactions in the buffer zones of Chitwan National Park and Parsa Wildlife Reserve in Nepal, through household questionnaire surveys, key informant interviews, site observations, and analysis of the reported cases of damage during January 2008-December 2012. During this 5-year period 290 incidents of damage by elephants were reported, with a high concentration of incidents in a few locations. Property damage (53%) was the most common type of damage reported. Crop damage was reported less often but household surveys revealed it to be the most frequent form of conflict. There were also human casualties, including 21 deaths and four serious injuries. More than 90% of the human casualties occurred during 2010-2012. More than two thirds of the respondents (70%) perceived that human-elephant conflict had increased substantially during the previous 5 years. Despite the increase in incidents of human-elephant conflict in the area, 37% of respondents had positive attitudes towards elephant conservation. Our findings suggest that public awareness and compensation for losses could reduce conflict and contribute to ensuring coexistence of people and elephants in this human-dominated landscape

    Ancient Himalayan wolf (Canis lupus chanco) lineage in Upper Mustang of the Annapurna Conservation Area, Nepal

    No full text
    The taxonomic status of the wolf (Canis lupus) in Nepal’s Trans-Himalaya is poorly understood. Recent genetic studies have revealed the existence of three lineages of wolves in the Indian sub-continent. Of these, the Himalayan wolf, Canis lupus chanco, has been reported to be the most ancient lineage historically distributed within the Nepal Himalaya. These wolves residing in the Trans-Himalayan region have been suggested to be smaller and very different from the European wolf. During October 2011, six fecal samples suspected to have originated from wolves were collected from Upper Mustang in the Annapurna Conservation Area of Nepal. DNA extraction and amplification of the mitochondrial (mt) control region (CR) locus yielded sequences from five out of six samples. One sample matched domestic dog sequences in GenBank, while the remaining four samples were aligned within the monophyletic and ancient Himalayan wolf clade. These four sequences which matched each other, were new and represented a novel Himalayan wolf haplotype. This result confirms that the endangered ancient Himalayan wolf is extant in Nepal. Detailed genomic study covering Nepal’s entire Himalayan landscape is recommended in order to understand their distribution, taxonomy and, genetic relatedness with other wolves potentially sharing the same landscape
    corecore