92 research outputs found

    INTRANASAL MICROEMULGEL AS SURROGATE CARRIER TO ENHANCE LOW ORAL BIOAVAILABILITY OF SULPIRIDE

    Get PDF
    Objective: The purpose of this study is to evaluate microemulsion based gel (MBG) of sulpiride "a poorly water soluble antipsychotic with low oral bioavailability."Methods: Gelling polymers such as sodium carboxymethylcellulose (CMC-Na), hydroxyl propyl methyl cellulose (HPMC K4m), carbopol 940 and Na alginate were evaluated for their potential to gel sulpiride microemulsions (MEs) without affecting the MEs structure. Also, sulpiride solution (SS) and conventional gel (without ME) were prepared and compared with MBG. Gel formulations were checked for their viscosity, pH, spreadability (S), mucoadhesive force (MF), and nasal ciliotoxicity studies. The in vitro release of sulpiride across a cellophane membrane and its permeation through the nasal mucosa in phosphate buffered saline pH 6.8 (PBS) were also performed. In addition, a pharmacodynamic study of optimized formulae compared to SS and microemulsion (ME) was evaluated in rats.Results: CMC-Na and HPMC K4m were not able to gel sulpiride loaded MEs while Na alginate gave an unclear gel with a sticky texture. Results revealed that the viscosity, mucoadhesion force, and spreadability of the MBG increased with increasing carbopol 940 concentrations. The flux was arranged as the following, MBG>conventional gel>sulpiride solution (SS). According to histopathological study, safe and non-irritant MBGs suitable for nasal administration were successfully prepared. Finally, the pharmacodynamic study indicated that intranasal sulpiride MBG had a significant effect (*P<0.001) than SS and ME administered either intravenous or intranasal.Conclusion: MBG provides signiï¬cant enhancement in nasal bioavailability not only by absorption enhancing effect of ME but also, by increasing nasal residence tim

    A Comparative Study of Prediction Techniques for Supersonic Missile Aerodynamic Coefficients / Loai A. El-Mahdy … [et al.]

    Get PDF
    Evaluating the aerodynamic coefficients of flying vehicles such as missiles is a key step in their design and development procedures. In practice, the aerodynamic coefficients can be estimated using experimental measurements, numerical simulations, or using empirical and semi-empirical engineering tools. In the present paper, these three approaches are compared in the context of examining the aerodynamic coefficients of a fin-stabilized tactical missile. Supersonic flight conditions up to Mach 4 at incidence up to 18 degrees are considered. Lift and drag coefficients as well as the centre of pressure locations based on the three approaches are compared. The flow features around the missile are explored based on the numerical simulations

    Physiological and Neurobehavioral Disturbances Induced by Al2O3 Nanoparticle Intoxication in Nile Tilapia Fish: Benefits of Dietary Chamomile Essential Oil

    Get PDF
    Despite the usage of nanoparticles (NPs) is rapidly increasing, several experts have noted the risk of their release into ecosystems and their potential negative impacts on biological systems. However, the available studies on the neurobehavioral impacts of aluminum oxide nanoparticles (Al2O3NPs) on aquatic organisms are little. Hence, this study targeted to ascertain the harmful effects of Al2O3NPs on behavioral characteristics and genotoxic and oxidative damages in Nile tilapia fish. In addition, the beneficial role of chamomile essential oil (CEO) supplementation in reducing these effects was also investigated. In the current study, fish were distributed into 4 equal groups (n = 60 fish per group). The control group was fed a plain diet only, the CEO group received a basic diet complemented with CEO at a level of 2 mg/kg diet, the ALNP group received a basic diet and was exposed to an approximate concentration of 1/10th LC50 of ALNPs nearly 5.08 mg/L, and the combination group (ALNPs/ CEO group) received a basal diet coadministered with ALNPs and CEO at the aforementioned percentages. The findings revealed that O. niloticus exhibit neurobehavioral changes along with changes in the level of GABA, monoamines in the brain tissue, and serum amino acid neurotransmitters, besides a reduction of AChE and Na+/K+-ATPase activities. In addition to brain tissue oxidative damage with upregulation of proinflammatory and stress genes, such as HSP70 and caspase-3, supplementation of CEO significantly reduced the negative impacts of ALNPs. These results showed that CEO has neuroprotective, antioxidant, genoprotective, anti-inflammatory, and antiapoptotic properties in fish that have been exposed to ALNPs. Therefore, we advise its usage as a valuable addition to fish diet

    In ovo protective effects of chicoric and rosmarinic acids against Thiacloprid-induced cytotoxicity, oxidative stress, and growth retardation on newly hatched chicks

    Get PDF
    Thiacloprid (TH) is a neonicotinoid insecticide employed in agriculture to protect fruits and vegetables against different insects. It showed different deleterious effects on the general health of non-target organisms including birds and animals, however, its developmental toxicity has yet to be fully elucidated. Chicoric (CA) and rosmarinic (RA) acids are polyphenolic compounds with a wide range of beneficial biological activities. In this study, the possible protective effects of CA and RA were investigated in chick embryos exposed in ovo to TH (1mg/egg) with or without CA (100 mg/egg) or RA (100 mg/egg) co-exposure. TH reduced the hatchling body weight, body weight/egg weight, and relative weight of bursa of Fabricius in the one-day-old hatchlings. Examination of the 7-day-old chicks revealed a decline in feed intake, daily weight gain, feed conversion ratio (FCR), and plasma levels of T3, T4, and growth hormone. Serum ALT, AST activities, and total cholesterol levels showed significant elevations. Hepatic MDA was increased with a reduction in SOD activity and GSH level and downregulation of the liver SOD and GST gene expression pattern. Serum IgG and IgM levels were reduced, and various histopathological alterations were noticed in the liver. Co-administration of CA or RA with TH mitigated the toxic effects on hatchlings. When both CA and RA are combined, they present a synergistic protective effect. CA and RA can be used as protective agents against TH toxicity as they improve growth performance and have hepatoprotective and immunostimulant effects in newly hatched chicks

    Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways

    Get PDF
    We recently showed that in vitro incubation of cells with liposomes of varying compositions can increase exosome secretion and increase the yield of harvested exosomes (extracellular vesicles, EVs). This might foster their potential therapeutic implementations. In the current study, we investigated the surface proteins and the uptake of the harvested exosomes (EVs) to see if the incubation of cells with liposomes would change the biological properties of these exosomes (EVs). Interestingly, exosomes (EVs) induced by solid cationic liposomes lacked some major exosome marker proteins such as CD9, flotillin-1, annexin-A2 and EGF, and subsequently had lower levels of cellular uptake upon re-incubation with donor cancer cells. However, exosomes (EVs) induced under normal condition and by fluid cationic liposomes, displayed the entire spectrum of proteins, and exhibited higher uptake by the donor cancer cells. Although endocytosis was the major uptake pathway of exosomes (EVs) by tumor cells, endocytosis could occur via more than one mechanism. Higher exosome uptake was observed in donor B16BL6 cells than in allogeneic C26 cells, indicating that donor cells might interact specifically with their exosomes (EVs) and avidly internalize them. Taken together, these results suggest a technique for controlling the characteristics of secreted exosomes (EVs) by incubating donor cancer cells with liposomes of varying physiochemical properties

    Rapid detection of equine piroplasms using multiplex PCR and first genetic characterization of Theileria haneyi in Egypt

    Get PDF
    Equine Piroplasmosis (EP) is an infectious disease caused by the hemoprotozoan parasites Theileria equi, Babesia caballi, and the recently identified species T. haneyi. Hereby, we used a multiplex PCR (mPCR) targeting the 18S rRNA gene of T. equi and B. caballi for the simultaneous detection of EP in Egyptian equids and examined the presence of T. haneyi infections in Egypt. Blood samples from 155 equids (79 horses and 76 donkeys) collected from different governorates of Egypt were examined by mPCR and PCR targeting T. hayeni. The mPCR method revealed a prevalence of T. equi of 20.3% in horses and of 13.1% in donkeys and a prevalence of B. caballi of 1.2% in horses. B. caballi was not detected in donkeys in the current study. The mPCR method also detected coinfections with both species (2.5% and 1.3% in horses and donkeys, respectively). Additionally, we report the presence of T. haneyi in Egypt for the first time in 53.1% of the horse and 38.1% of the donkey tested samples. Coinfection with T. haneyi and T. equi was found in 13.5% of the samples, while infection with the three EP species was found in 1.9% of the samples.B.S.M.E, National research center, (NRC)http://www.mdpi.com/journal/pathogenspm2022Veterinary Tropical Disease

    Perspective Chapter: The Toxic Silver (Hg)

    Get PDF
    In the late 1950s, residents of a Japanese fishing village known as “Minamata” began falling ill and dying at an alarming rate. The Japanese authorities stated that methyl-mercury-rich seafood and shellfish caused the sickness. Burning fossil fuels represent ≈52.7% of Hg emissions. The majorities of mercury’s compounds are volatile and thus travel hundreds of miles with wind before being deposited on the earth’s surface. High acidity and dissolved organic carbon increase Hg-mobility in soil to enter the food chain. Additionally, Hg is taken up by areal plant parts via gas exchange. Mercury has no identified role in plants while exhibiting high affinity to form complexes with soft ligands such as sulfur and this consequently inactivates amino acids and sulfur-containing antioxidants. Long-term human exposure to Hg leads to neurotoxicity in children and adults, immunological, cardiac, and motor reproductive and genetic disorders. Accordingly, remediating contaminated soils has become an obligation. Mercury, like other potentially toxic elements, is not biodegradable, and therefore, its remediation should encompass either removal of Hg from soils or even its immobilization. This chapter discusses Hg’s chemical behavior, sources, health dangers, and soil remediation methods to lower Hg levels

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Tuning structural, electrical, linear, and nonlinear optical properties of cadmium zinc telluride quantum dot thin films

    No full text
    Quantum dots of Cd0.18Zn0.14Te0.68 thin films of various thicknesses are deposited on a glass substrate using inert gas condensation and characterized using many techniques. Structural analysis confirms the cubic polymorph of the thin films. The particle size increased from 5.7 to 10.35 nm as the film thickness increased from 10 to 100 nm. Bandgap calculations show two direct allowed transitions, one of which is 1.8 eV for different thicknesses. The other transition changes from the ultra-violet region (3.7 eV) for 10 nm thickness to yellow (2 eV) for 100 nm thickness, depending on the particle size. This result suggests that this material is suitable for use in multiple absorption layers of the same material rather than multilayers of different materials in tandem solar cells. The optical linear and nonlinear parameters highly depend on the particle size. Electrical conductivity shows intrinsic conduction with low activation energies from ambient temperature to 336 K

    Tuning Paramagnetic effect of Co-Doped CdS diluted magnetic semiconductor quantum dots

    No full text
    Diluted magnetic semiconductor quantum dots (DMS-QDs) are known for their outstanding optical and magnetic properties. II–VI DMS-QDs, in particular, are interesting for spintronics, nonvolatile memory, and magneto-optical devices. Therefore, studying the optical and magnetic properties of different II-VI semiconductors doped with transition metal atoms is of great importance. Tuning II-VI QDs optical properties can be mastered by changing the QDs particle size and/or structure. However tuning the magnetic properties of DMS-QDs is still within trial and error verification, although it is crucial in targeting different applications in spintronics. We hereby demonstrate, the ability to tune the paramagnetic effect of homogeneous Co-doped CdS QDs following a co-precipitation synthesis route with different Co2+ concentrations. The structural, optical and magnetic properties have been comprehensively studied. The dopant cobalt atoms concentration and chemical-configuration were precisely tracked by x-ray photoemission spectroscopy. Excitingly, the different Co-concentrations of 2, 5 and 10% significantly improve the magnetic properties of the CdS QDs, which exhibit a paramagnetic concentration-dependent effect. With 10% of Co atoms, we were able to achieve ~ 200 x 10(-6) molar susceptibility, that is, the same value to that of pure CoS. Thus we could obtain the highest possible paramagnetic effect in the CdS semiconducting matrix exhibiting 2.76 eV band gap, i.e. in the visible range. This efficacious result encourages the use of the present method in preparing DMS-QDs materials targeting various spintronics applications.AE and IM are acknowledging the funding provided by the joint Russian Egyptian STDF project no. 13756. AE is also grateful also for the general administration of Missions at the Ministry of High Education in Egypt for funding the mission trip to Centro de Fisica de Materiales on 2016. CR and EO are grateful for funding from the Spanish Ministry of Economy and Competitiveness (grant MAT2016-78293-C6-5-R, including FEDER funds), the Basque Government (grant IT-1255-19) and the Interreg POCTEFA V-A Spain–France–Andorra Program (EFA 194/16/TNSI) partly financed by ERDF funds.Peer reviewe
    corecore