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ABSTRACT 

 

Evaluating the aerodynamic coefficients of flying vehicles such as missiles is 

a key step in their design and development procedures. In practice, the 

aerodynamic coefficients can be estimated using experimental measurements, 

numerical simulations, or using empirical and semi-empirical engineering 

tools. In the present paper, these three approaches are compared in the context 

of examining the aerodynamic coefficients of a fin-stabilized tactical missile. 

Supersonic flight conditions up to Mach 4 at incidence up to 18 degrees are 

considered. Lift and drag coefficients as well as the centre of pressure 

locations based on the three approaches are compared. The flow features 

around the missile are explored based on the numerical simulations. 

 

Keywords: Missile Aerodynamics; CFD; Wind Tunnel; Aerodynamic 

Coefficients; Supersonic Missile. 

 

 

Introduction 
 

Throughout regular design and development routine of flying vehicles, 

understanding and evaluating the aerodynamic characteristics of these vehicles 

is one crucial step. In the conceptual design steps, empirical and semi-

empirical tools are implemented to provide quick yet less accurate results. As 

the design process evolves towards the final design, higher fidelity tools such 

as computational and experimental techniques are applied for more accurate 

results. 

In the framework of a research conducted by the authors to enhance an 

existing supersonic missile system, the missile airframe is modified. The 
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aerodynamic coefficients of the modified missile are measured experimentally 

on a 1:16 model in a wind tunnel. In addition to better understanding the 

aerodynamic features of the modified airframe, the experimental 

measurements have shown some phenomena that needed to be confirmed using 

approaches other than the experimental one. Since the missile airframe is 

modified, its aerodynamic coefficients are not available especially, indeed, in 

the open literature. The present paper is devoted to presenting the findings of 

the comparative study on the different predictive approaches of the missile 

aerodynamics coefficients. 

The aspects of the missile aerodynamics have been extensively studied 

by the researchers over decades and still draw the attention of researchers. To 

avoid lengthy and irrelevant survey, the focus here is made to survey from 

previous comparative studies of different predictive techniques. Experimental, 

empirical, and computational approaches were compared in a huge body of 

studies.  Empirical and experimental approaches were compared in [1-13] 

whereas in [14-22], computational results were compared with experimental 

measurements. Computational techniques were also compared with empirical 

ones in [23].Comparative studies aggregating the three approaches were only 

conducted by Rosema el al. [24] who implemented the three approaches in a 

comparative study on the aerodynamic coefficients of several missiles with 

strakes.   

The main objective of the present study is to explore and confirm the 

aerodynamic characteristics of a conventional tactical missile at high Mach 

numbers and high angles of attack. The findings of the experimental, 

computational, and empirical approaches are compared and presented as a 

contribution to the available database for researchers. It is also desired to assess 

the validity of an empirical code developed by the research group. The 

modified missile configuration under investigation is a cone-cylinder equipped 

with four trapezoidal stabilizing fins and the freestream Mach number varies 

from 1.5 to 4 at incidence angle varying from 4 to 18. The ranges of Mach 

number and angles of attack represent the real flight conditions of the modified 

missile in concern. The variation of the lift and drag coefficients and the centre 

of pressure location and the flowfield structure around the missile are 

considered.  The commercial CFD solver ANSYS [25] is utilized as the 

computational tool whereas a research code developed by the authors is 

implemented as the semi-empirical tool. Data from a set of own experimental 

wind tunnel measurements are used for comparison. The case study and the 

approach of study are explained in detail in the next section followed by the 

discussion of the key results. The paper finalizes by the addressing the main 

conclusions. 
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Case Study and Methodology 
 

The model that has been tested in the wind tunnel experiments is a 1:16 scaled 

missile body configuration. It is composed of cone-cylinder body, two outer 

conduits, and four fins. The model has a total length and caliber of 551.25 mm 

and 34 mm, respectively. The sketch of the model configuration is shown in 

Figure 1. 

 

 
 

Figure 1: Model configuration 

 
Wind tunnel data 

Comprehensive experimental wind tunnel tests [26] have been conducted to 

estimate the aerodynamic characteristics of the model shown above. The model 

is tested in a tri-sonic wind tunnel which test section dimensions are 0.6  0.6 

meters and its length is 1.575m. The test conditions are variable from Mach 

0.4 to 4.45, the corresponding Reynolds number of the flow at the test section 

inlet varies from 8.7  106 to 26.5  106 such that the reference length is the 

total model length. A conventional attack angle mechanism can change the 

attack angle in the range of 15~38. The aerodynamic loads on the model 

are directly measured using a sting balance that is internally fitted in the base 

of the model that is placed in the test section with fins at the x-orientation.  

Based on the measured loads, the aerodynamic coefficients are 

calculated by taking the reference length and area of 0.55125 m and 0.0009079 

m2, respectively. The accuracy of recorded data in measurements of the 

aerodynamic loads is maintained within 1% of their nominal values.  
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Numerical Simulation  
A computational domain identical to the test section of the wind tunnel in the 

experiments is constructed so as to exactly replicate the experimental test 

conditions. The domain has the same dimension as the test section. Since only 

the incidence angle is considered, the flow around the model is pitch-plane 

symmetric. Thus, only half 3D domains are constructed, as shown in Figure 2. 

 

 
 

Figure 2: Boundaries of the bounded domain and their definitions 

 

The upstream boundary of the domain is set to be pressure inlet. For this 

boundary type, the gauge total pressure and the total temperature are defined 

as in the tunnel experimental data. The downstream boundary is defined as 

pressure outlet where the values of the gauge pressure and the total temperature 

are specified. The pitch plane is defined as symmetry plane with zero normal 

gradients of the flow properties.  All the surfaces of the model and the sting 

are defined as non-slip walls. The wind tunnel walls are defined as slip walls 

on which no boundary layer is created numerically. Domain boundary 

definitions are shown in Figure 2. 

The domain is discretized using an unstructured tetrahedral grid. The 

quality of the generated grid is enhanced by applying successively two scoping 

methods; the body element sizing then the sphere of influence sizing. Body 

element sizing yields a clustered fine grid on the body surface only whereas 

the sphere of influence is drawn in the areas of the domain where the shock 

and expansion waves take place. Five spheres of influence are drawn 

eventually yielding a nearly feature-aligned grid (the thick circles in Figure  

mark the spheres of influence). A grid sensitivity check is applied to the grid. 

A grid with 1825562 cells is found to yield a grid-independent prediction of 

the aerodynamic coefficients.  
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Figure 3: Domain discretization using sphere of influence scoping method 

 

Since the CFD simulations are designed to simulate the flow through 

the wind tunnel test section, the incoming flow is made normal to the inlet 

boundary. The model angle of attack is introduced by making the model 

inclined with respect to the domain. Hence, for each angle of attack, a unique 

computational domain is created and discretized; the same grid refinement 

approach is adopted for all domains. To keep the simulations within the 

available limited computational budget and resources, it was decided to specify 

only four angles of attack that can be representative for the entire range of 

incidence angles in concern from low (4o) to moderate (10o, 14o) to high (18o). 

The selected angles of attack are expected to be sufficient to capture the trend 

of variation of aerodynamic features with incidence. 

ANSYS FLUENT is a commercial CFD code which uses a cell-centered 

finite volume method and has been proven to work well for different flow 

regimes around missiles. The double-precision implicit density-based steady 

solver available in the solver is implemented in the present simulations along 

with a second-order special discretization scheme. Air is treated as ideal gas 

and Spalart-Allmaras turbulence model is implemented. The numerical 

simulation is said to converge once the iterations residuals drops below 1×105 

while maintaining an invariable value of a physical criterion (taken here as the 

total drag coefficient on the model). 

 
Semi-empirical prediction code 
Missile Aerodynamics Code, MAC [27] is an aerodynamic prediction software 

that has been developed by the research group. It is specially designed to 

estimate the aerodynamic characteristics of winged and un-winged flying 

bodies with two sets of four-panel wings at 90o to each other. The concept 

depends on using experimental and theoretical data of standard body and panel 



Loai El-Mahdy et. al 

 

38 
 

 

shapes which are known to an acceptable degree of accuracy [28-33] for 

calculating the aerodynamic characteristics of considered combination using 

the component build-up technique. The software calculates all aerodynamic 

coefficients and characteristics needed for determination of the flying body 

performances and flying qualities. The structure of the code that is written in 

MATLAB is composed of 39 subroutines. They are categorized into four 

groups. The geometry group handles all geometric inputs of the missile and 

calculates all geometric parameters necessary for calculations such as body 

surface areas, panels areas, etc. this set also includes a subroutine to calculate 

the atmospheric properties based on the input flight altitude and speed. The 

second set of subroutines estimate the missile drag. It includes subroutines to 

estimate the drag components (pressure, wave, skin friction, induced drag, etc.) 

on each of the missile airframe components. The total drag is calculated as the 

algebraic sum of all drag components. The thirst set includes lift and moment 

estimation subroutines. The individual lift and moments of each of the missile 

components are estimated. The overall missile lift and moments coefficients 

are calculated taking the interferences among missile body components into 

consideration. The last set of subroutines estimates the aerodynamic 

derivatives of the missile with respect to flight parameters.         

 

Results and Discussions 
 
Variation of the Total Lift Coefficient with the Freestream 
Conditions 
The dependence of model lift coefficient on the freestream conditions is 

illustrated in the set of figures below; each for a value of freestream Mach 

number. 

 

 
(a) Mach 1.5 
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(b) Mach 2.5 

 
(c) Mach 4 

 
Figure 4: Variation of lift coefficient with incidence 

For all Mach numbers, similar to drag coefficient, the measured lift 

coefficient increases with the increase in the angle of attack. The curves show 

coherence of the computational and analytical results to the experimental 

measured behavior with very small error values at low incidence (4o) and 

higher ones at high incidences (14o). At extreme conditions namely, high Mach 

(Mach 4) and incidence (14o), CFD simulations results show better accuracy 

compared with those of the empirical tool. Figure  brings together the 

dependence of the model lift coefficient with the freestream conditions, Mach 

and incidence values as estimated experimentally, numerically, and 

empirically. Clearly, lift coefficient is more sensitive to variation of incidence 

angle than that of the freestream Mach value. 
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(a) Experiments 

 
(b) CFD 

 
(c) MAC 

 

Figure 5: Variation of lift coefficient with the Mach number at different 

angles of attack 
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Variation of the Total Drag Coefficient with the Freestream 
Conditions  
The dependence of the total drag coefficient of the model with the freestream 

conditions is illustrated in the set of figure below. In these figures, the 

variations of the experimental, numerical, and empirical results of total drag 

coefficient with incidence are compared for each value of Mach number. 

 

 
(a) Mach 1.5 

 
(b) Mach 2.5

 
(c) Mach 4 

Figure 6: Variation of total drag coefficient with incidence  
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Closely examining the figure above shows that At 4o incidence, the drag 

has its minimum values for all Mach numbers. Drag decreases slightly with the 

increase in Mach value while it increases considerably with the incidence 

angle. As the incidence increases, the slope of this dependence increases 

monotonically. Generally, the rise in drag with the incidence angle shows a 

steep trend for α>10o. On average, the drag increases by about 52% as 

incidence increases from 4o to 10o. The percentage of drag rise increases by 

56% then 58% as the incidence angle increases from 10o to 14o then to 18o. 

Compared with experimental values, the trend of results is better captured by 

CFD simulation than that given by empirical technique. This accuracy is more 

pronounced at higher Mach values than that at lower ones. The accuracy of 

MAC results is higher at incidence angles below 10o and improves at higher 

Mach values.  

Figure 7 aggregates the dependence of CD on the freestream conditions 

namely, Mach number and incidence angle as estimated experimentally, 

computationally, and analytically. It is clear that the drag is more sensitive to 

the variation of incidence angle than to that of the free stream Mach number. 

The sensitivity of drag value with respect to incidence and Mach is measured 

by the change in drag value per unit change in incidence and Mach, 

respectively. For instance, from Figure 5a, the drag coefficient increases from 

0.63 to 1.9 as the incidence angle increases from 4 to 18 (for Mach 1.5). The 

rise in drag becomes more pronounced with the increase in incidence. On 

average, the drag coefficient value increases by 14.4% per unit increase in 

incidence angle. In contrast, the drag coefficient drops from 1.9 to 1.63 as the 

Mach value increases from 1.5 to 4 (for 18o incidence). This corresponds to an 

average drop by 5.6% per unit increase in Mach value. Based on this 

estimation, the drag is said to be more sensitive to incidence than to Mach 

value. 
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(b) CFD 

 

 
(c) MAC 

Figure 7: Change of the drag coefficient with the Mach number at different 

angles of attack 

 
Variation of the Centre of Pressure Position with the Freestream 
Conditions 
The centre of pressure of the missile is the point of action of the resultant 

aerodynamic forces acting on it, Figure 8. In experiments, it is calculated by 

dividing the measured pitching moment coefficient (about the model gravity 

centre) by the measured normal force coefficient. The distance to the pressure 

centre is then measured with respect to a fixed point in the model airframe (to 

eliminate the impact of gravity centre location). Here, the model nose tip (most 

forward point on the model) is chosen as the reference location. In CFD, the 

solver calculates the local pressure and shear stress in each and every wall cell 

over the entire model surface. It then integrates the normal force and pitching 

moment generated by local pressures and shear stresses about the model nose 

tip. The location of centre of pressure (distance from the nose tip) is then 
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calculated by dividing the calculated pitching moment by the calculated 

normal force. In MAC, the pitching moment coefficient of the entire model is 

estimated as the sum of those of the individual model components; the nose, 

cylindrical midsection, afterbody, wings, tails and about any given point (here, 

the nose tip is input by the user). The normal force coefficient is estimated in 

the same manner. The location of centre of pressure is then estimated by 

dividing the pitching moment coefficient by the normal force coefficient. In all 

three approaches, the resulting centre of pressure location (which is the 

distance to the centre of pressure measured from the model nose tip) is 

normalized with respect to the predefined reference length of the model (here, 

the model total length). 

 

 
Figure 8: Location of model centre of pressure 

 

The change in centre of pressure location with the freestream conditions 

is shown in Figure 9. The centre of pressure distance measured from the model 

nose tip is normalized with respect to the model length. 
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(b) Mach 2.5 

 
(c) Mach 4 

Figure 9: Variation of normalized centre of pressure with incidence 
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model pressure centre location. Figure 10 aggregates the dependence of model 

pressure center location on the flight conditions namely, Mach number and 

incidence angle. The attitude of moving backward beyond Mach 3 for 10o 

incidence, beyond Mach 2.5 for 14o incidence and Mach 2 for 18o incidence is 

exclusively captured by CFD simulations in agreement with wind tunnel 

measurements. MAC slightly manages to capture the same attitude with less 

accurate values.  

 

 
(a) Experiments 

 
(b) CFD 

 
(c) MAC 

Figure 10: Variation of center of pressure position with the Mach number and 

angle of attack 
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An explanation for the trend of centre of pressure location shown by 

both experimental measurements and CFD simulations is attempted here. At 

low Mach number and low incidence values, the centre of pressure location 

follows the typical trend namely, shifting upstream towards the missile nose 

with the increment of both Mach and incidence. As the Mach and/or incidence 

values increase, the centre of pressure shifts downstream rather than upstream. 

This may indicate the creation of a new component of normal force that acts 

on the aft 0f the missile causing the location of the resultant force to shift 

towards the missile base. This new component is the normal force due to 

separation of the cross flow around the missile midsection which gets more 

pronounced closer to missile base and as the cross flow speed (component of 

freestream velocity normal to the missile axis) increases. Hence, as inferred 

from Figure 10, the higher the freestream Mach value, the lower the incidence 

angle beyond which this phenomenon takes place. This explanation will be 

supported as the flow structure is investigated in the next section.   
 
Evolution of the Flow Pattern with the Freestream Conditions 
Results of numerical simulation are implemented to illustrate the evolution of 

the flow structure around the model with the freestream conditions. As a start, 

the freestream conditions at M=1.2 and α=4o are considered. The pressure and 

Mach contours in the symmetry plane of the domain around the model at these 

conditions are shown in Figure 11. 

 

 
 

Figure 11: Pressure and Mach contours around the model at M=1.2 and α =4⁰ 
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As shown in the above figure, the region of maximum pressure is at 

windward side of the nose tip; the stagnation zone where the flow at this zone 

is of near-zero velocity. A shock is constructed at the nose tip extending to the 

walls of the test section and reflecting back. Behind the shock, there exists a 

region of higher pressure (than that before the shock) that is reduced again at 

the nose shoulder due to the expansion. Another local shock is created at 

leading edge of the upper and lower ducts. Finally comes the region of lowest 

pressure at the base due to the expansion fan then the wake behind the base. 

The reflected shock impinges back the model surface at the midsection of the 

model forming a region of high pressure after the reflected wave, which causes 

the boundary layer to separate forming a local normal shock (bow shock).The 

pressure and Mach contours in the symmetry plane of the domain around the 

model at M=1.5 and α=4o is shown in Figure 12.  
 

 

 
 

Figure 12: Pressure and Mach contours around the model at M=1.5 and α =4⁰ 

At Mach 1.5 the reflected shock intersects with the expansion at the 

base. This is more pronounced at the windward side. The expansion at the base 

is also followed by the recirculation of the confined air behind the base of the 

model. The boundary layer thickness appears to be increasing as the flow 

progresses towards the base of the model, and is larger on the leeward side than 

on the windward side of the model. The set of graphs in Figure 13 below 

illustrates the evolution of the flow pattern around the model with the rise of 

freestream Mach number. Pressure contours and Mach contours on the 

symmetry plane are shown to the left and right respectively. 
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(a) Mach 2 

 

 
(b) Mach 4 

 
Figure 13: Pressure and velocity contours around the model at α =4 

As the Mach number increases, all shock waves and expansion fans 

become more oblique. The shock reflection shifts towards the exit of the test 

section such that eventually no shock reflection at all within the test section 

can be addressed starting from Mach 3. The evolution of the flow pattern as 

the incidence angle increases for Mach 1.5 freestream is illustrated in Figure 

14 below. 
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 (a) α =4⁰ 

 

 
 

 (b) α =10⁰ 
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(c) α=18⁰ 

 

Figure 14: Pressure and Mach contours around the model at M=1.5 

As the angle of attack increases, the flow deflection angle on the 

leeward side decreases while that on the windward side increases. Eventually, 

for incidence greater than 10⁰, the deflection angle at the leeward side is less 

than the angle of attack at which moment the shock occurs only at the 

windward side of the nose while an expansion takes place on the leeward side. 

Figures 15 and 16, respectively, show the cross flow pattern at the two stations 

namely, midway along the model and within the fin section.  

 

  
 

(a) 4⁰ incidence  (b) 18⁰ incidence 

Figure 15: Mach contours midway along the model at Mach 2 
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(a) 4⁰ incidence   (b) 18⁰ incidence 

 
Figure 16: Mach contours at the wing-section of the model at Mach 2 

 

The figures above illustrate the flow pressure and velocity difference 

between the leeward and windward sides of the model, as explained before. 

This difference increases with the increase in incidence. In addition, as the 

incidence increases, the separation of the flow occurs earlier than that at lower 

incidences. The size of flow separation at the mod section, Figure 14a increases 

as the incidence angle increases. This feature supports the explanation stated 

earlier regarding the downstream shift of the missile centre of pressure 

location. 

 
Conclusions 
 
The aerodynamic characteristics of the modified configuration of a fin-

stabilized missile are investigated in the present work and the objective is 

threefold. First, to compare the capabilities of prediction and accuracy of 

missile aerodynamic coefficients using three approaches namely experimental, 

computational, and empirical in the range of Mach numbers 1.5 to 4 and 

incidence angles 4o to 18o. Secondly, to assess the accuracy of the developed 

empirical code. Finally, to explore the flow features around the missile at this 

range of  Mach numbers and angles of attack.  

Referring to the results section, it can be seen that CFD results are closer 

to the measured values especially for drag and centre of pressure. In lift, the 

MAC tool provides highly acceptable accuracy with regard to its simplicity. 
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Overall, the accuracy of MAC improves as the incidence angle and Mach 

values increase. This invokes revising the empirical techniques used by MAC 

regarding especially the low Mach values and viscous cross flow calculations. 

It has been proved, in many ways, that the location of pressure centre of 

the missile investigated shows a special behaviour. At low incidence, as the 

Mach number increases, the centre of pressure shifts towards the model nose. 

At higher incidence angles, as the Mach number increases, the pressure centre 

shifts upstream (towards the model nose) and then downstream. The value of 

the freestream Mach number beyond which the pressure centre location starts 

to migrate downstream decreases as the incidence angle increases. This 

behaviour of pressure centre location has been captured by experimental 

measurements, CFD simulations, and MAC. For the case investigated, the 

presence of wind tunnel test section wall had no interference on the flowfield 

around the model. The shock waves and expansion fans reflected on these 

walls yielding no effect on the measured aerodynamic parameters as long as 

they do not impinge back on the model.  
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