496 research outputs found

    Core-level photoemission spectroscopy of nitrogen bonding in GaNxAs1–x alloys

    Get PDF
    The nitrogen bonding configurations in GaNxAs1–x alloys grown by molecular beam epitaxy with 0.07=0.03, the nitrogen is found to exist in a single bonding configuration – the Ga–N bond; no interstitial nitrogen complexes are present. The amount of nitrogen in the alloys is estimated from the XPS using the N 1s photoelectron and Ga LMM Auger lines and is found to be in agreement with the composition determined by x-ray diffraction

    Tunable backaction of a dc SQUID on an integrated micromechanical resonator

    Full text link
    We have measured the backaction of a dc superconducting quantum interference device (SQUID) position detector on an integrated 1 MHz flexural resonator. The frequency and quality factor of the micromechanical resonator can be tuned with bias current and applied magnetic flux. The backaction is caused by the Lorentz force due to the change in circulating current when the resonator displaces. The experimental features are reproduced by numerical calculations using the resistively and capacitively shunted junction (RCSJ) model.Comment: Submitted to Phys. Rev. Let

    Photoluminescence spectroscopy of bandgap reduction in dilute InNAs alloys

    Get PDF
    Photoluminescence (PL) has been observed from dilute InNxAs1–x epilayers grown by molecular-beam epitaxy. The PL spectra unambiguously show band gap reduction with increasing N content. The variation of the PL spectra with temperature is indicative of carrier detrapping from localized to extended states as the temperature is increased. The redshift of the free exciton PL peak with increasing N content and temperature is reproduced by the band anticrossing model, implemented via a (5×5) k·p Hamiltonian

    The Security Blanket of the Chat World: An Analytic Evaluation and a User Study of Telegram

    Get PDF
    The computer security community has advocated widespread adoption of secure communication tools to protect personal privacy. Several popular communication tools have adopted end-to-end encryption (e.g., WhatsApp, iMessage), or promoted security features as selling points (e.g., Telegram, Signal). However, previous studies have shown that users may not understand the security features of the tools they are using, and may not be using them correctly. In this paper, we present a study of Telegram using two complementary methods: (1) a labbased user study (11 novices and 11 Telegram users), and (2) a hybrid analytical approach combining cognitive walk-through and heuristic evaluation to analyse Telegram’s user interface. Participants who use Telegram feel secure because they feel they are using a secure tool, but in reality Telegram offers limited security benefits to most of its users. Most participants develop a habit of using the less secure default chat mode at all times. We also uncover several user interface design issues that impact security, including technical jargon, inconsistent use of terminology, and making some security features clear and others not. For instance, use of the end-to-end-encrypted Secret Chat mode requires both the sender and recipient be online at the same time, and Secret Chat does not support group conversations

    Analysis of Food Insecurity and Surveillance Based on the FANP Method in the northwest of Iran

    Get PDF
    Food insecurity is frequent in both developed and developing countries, affecting from 5% to 25% of the general population. It has considerable health impacts on the physical, social, and psychological status of individuals in communities suffering from food insecurity. In this paper, we seek to use the Fuzzy analytical network process (FANP) for analysis of food insecurity surveillance and selecting the best strategies for improving it. This cross-sectional study was conductedon 300 subjects (132 male and 168 female) selected randomly in the Asadabadi area of the northwest of Iran.The method is validated using the structural validation approach

    Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies

    Get PDF
    Nanoelectromechanical systems (NEMS) that operate in the megahertz (MHz) regime allow energy transducibility between different physical domains. For example, they convert optical or electrical signals into mechanical motions and vice versa. This coupling of different physical quantities leads to frequency-tunable NEMS resonators via electromechanical non-linearities. NEMS platforms with single- or low-degrees of freedom have been employed to demonstrate quantum-like effects, such as mode cooling, mechanically induced transparency, Rabi oscillation, two-mode squeezing and phonon lasing. Periodic arrays of NEMS resonators with architected unit cells enable fundamental studies of lattice-based solid-state phenomena, such as bandgaps, energy transport, non-linear dynamics and localization, and topological properties, directly transferrable to on-chip devices. Here we describe one-dimensional, non-linear, nanoelectromechanical lattices (NEML) with active control of the frequency band dispersion in the radio-frequency domain (10–30 MHz). The design of our systems is inspired by NEMS-based phonon waveguides and includes the voltage-induced frequency tuning of the individual resonators. Our NEMLs consist of a periodic arrangement of mechanically coupled, free-standing nanomembranes with circular clamped boundaries. This design forms a flexural phononic crystal with a well-defined bandgap, 1.8 MHz wide. The application of a d.c. gate voltage creates voltage-dependent on-site potentials, which can significantly shift the frequency bands of the device. Additionally, a dynamic modulation of the voltage triggers non-linear effects, which induce the formation of a phononic bandgap in the acoustic branch, analogous to Peierls transition in condensed matter. The gating approach employed here makes the devices more compact than recently proposed systems, whose tunability mostly relies on materials’ compliance and mechanical non-linearities

    Surface structure of the Ag-In-(rare earth) complex intermetallics

    Get PDF
    We present a study of the surface structure of the Ag-In-RE (RE: rare-earth elements Gd, Tb, and Yb) complex intermetallics using scanning tunneling microscopy and low-energy electron diffraction. The surface of the Ag-In-Yb approximant prepared by sputter-annealing methods under ultrahigh-vacuum conditions produces a flat (100) surface with no facets. However, the Ag-In-Gd and Ag-In-Tb 1/1 approximants, which have a surface miscut of about 12∘ relative to the (100) plane, develop surface facets along various crystallographic directions. The structure of each facet can be explained as a truncation of the rhombic triacontahedral clusters, i.e., the main building blocks of these systems. Despite their differences in atomic structure, symmetry, and density, the facets show common features. The facet planes are In rich. The analysis of the nearest-neighbor atom distances suggests that In atoms form bonds with the RE atoms, which we suggest is a key factor that stabilizes even low-density facet planes

    Distinct Host–Mycobacterial Pathogen Interactions between Resistant Adult and Tolerant Tadpole Life Stages of Xenopus laevis

    Get PDF
    Mycobacterium marinum is a promiscuous pathogen infecting many vertebrates, including humans, whose persistent infections are problematic for aquaculture and public health. Among unsettled aspects of host–pathogen interactions, the respective roles of conventional and innate-like T (iT) cells in host defenses against M. marinum remain unclear. In this study, we developed an infection model system in the amphibian Xenopus laevis to study host responses to M. marinum at two distinct life stages, tadpole and adult. Adult frogs possess efficient conventional T cell–mediated immunity, whereas tadpoles predominantly rely on iT cells. We hypothesized that tadpoles are more susceptible and elicit weaker immune responses to M. marinum than adults. However, our results show that, although anti–M. marinum immune responses between tadpoles and adults are different, tadpoles are as resistant to M. marinum inoculation as adult frogs. M. marinum inoculation triggered a robust proinflammatory CD8+ T cell response in adults, whereas tadpoles elicited only a noninflammatory CD8 negative- and iT cell–mediated response. Furthermore, adult anti–M. marinum responses induced active granuloma formation with abundant T cell infiltration and were associated with significantly reduced M. marinum loads. This is reminiscent of local CD8+ T cell response in lung granulomas of human tuberculosis patients. In contrast, tadpoles rarely exhibited granulomas and tolerated persistent M. marinum accumulation. Gene expression profiling confirmed poor tadpole CD8+ T cell response, contrasting with the marked increase in transcript levels of the anti–M. marinum invariant TCR rearrangement (iVα45-Jα1.14) and of CD4. These data provide novel insights into the critical roles of iT cells in vertebrate antimycobacterial immune response and tolerance to pathogens
    • …
    corecore