76 research outputs found

    Predicting species abundance distributions by simultaneously using number and biomass as units of measurement

    Get PDF
    The universal observation that some species in an ecological community are common, but many more are rare, is neatly encapsulated in a species abundance distribution (SAD)1. However, the shape of the distribution can depend on the currency used to measure abundance 2. Here we show how the SADs for numerical abundance and biomass are related and how this relationship can be used to predict the form of the SAD. When plotted in log numerical abundance, log biomass space, species points lie within an approximately triangular area the limits of which are set by body size range, and the upper limit of abundance in both metrics. Under the simplifying, but reasonable, assumption that the observed scatter of species within this region is random, the shape of the SAD is immediately derived from simple geometrical considerations. For the SAD of numerical abundance this is a power curve. The biomass SAD can be either a power curve or, more frequently, a unimodal curve, which can approximate a log normal. This log triangular random placement model serves as a null hypothesis against which actual communities can be compared. Data from two intensively surveyed local communities indicate that it can give a good approximation, with species scattered within a triangle. Further, we can predict the consequences, for the SAD, of size-selective sampling protocols. We argue that mechanistic models of SADs must be able to account for the relative abundance of species in alternative currencies. Moreover, this approach will shed light on niche packing and may have application in environmental monitoring

    Dominance structure of assemblages is regulated over a period of rapid environmental change

    Get PDF
    F.A.M.J. is financed by the School of Biology, University of St Andrews. A.E.M. acknowledges funding from the European Research Council (ERCAdG BioTIME 250189 and ERCPoC BioCHANGE 727440).Ecological assemblages are inherently uneven, with numerically dominant species contributing disproportionately to ecosystem services. Marked biodiversity change due to growing pressures on the world's ecosystems is now well documented. However, the hypothesis that dominant species are becoming relatively more abundant has not been tested. We examined the prediction that the dominance structure of contemporary communities is shifting, using a meta-analysis of 110 assemblage timeseries. Changes in relative and absolute dominance were evaluated with mixed and cyclic-shift permutation models. Our analysis uncovered no evidence of a systematic change in either form of dominance, but established that relative dominance is preserved even when assemblage size (total N) changes. This suggests that dominance structure is regulated alongside richness and assemblage size, and highlights the importance of investigating multiple components of assemblage diversity when evaluating ecosystem responses to environmental drivers.PostprintPeer reviewe

    Gradients in predation risk in a tropical river system

    Get PDF
    We are grateful for 2 European Research Council grants (BIOTIME 250189 and BioCHANGE 727440).The importance of predation risk as a key driver of evolutionary change is exemplified by the Northern Range in Trinidad, where research on guppies living in multiple parallel streams has provided invaluable insights into the process of evolution by natural selection. Although Trinidadian guppies are now a textbook example of evolution in action, studies have generally categorized predation as a dichotomous variable, representing high or low risk. Yet, ecologists appreciate that community structure and the attendant predation risk vary substantially over space and time. Here, we use data from a longitudinal study of fish assemblages at 16 different sites in the Northern Range to quantify temporal and spatial variation in predation risk. Specifically we ask: 1) Is there evidence for a gradient in predation risk? 2) Does the ranking of sites (by risk) change with the definition of the predator community (in terms of species composition and abundance currency), and 3) Are site rankings consistent over time? We find compelling evidence that sites lie along a continuum of risk. However, site rankings along this gradient depend on how predation is quantified in terms of the species considered to be predators and the abundance currency is used. Nonetheless, for a given categorization and currency, rankings are relatively consistent over time. Our study suggests that consideration of predation gradients will lead to a more nuanced understanding of the role of predation risk in behavioral and evolutionary ecology. It also emphasizes the need to justify and report the definition of predation risk being used.Publisher PDFPeer reviewe

    Measuring temporal change in alpha diversity : a framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization

    Get PDF
    Funding: This work is jointly supported by the Natural Environment Research Council, UK (NE/T004487/1 for AM and MD) and the Taiwan Ministry of Science and Technology under Contracts NERC-MOST 108-2923-M-007-003 (for AC and CC). AM and MD also acknowledge support from the Leverhulme Trust (RPG-2019-401).1. Biodiversity is a multifaceted concept covering different levels of organisation from genes to ecosystems. Biodiversity has at least three dimensions: (i) Taxonomic diversity (TD): a measure that is sensitive to the number and abundances of species. (ii) Phylogenetic diversity (PD): a measure that incorporates not only species abundances but also species evolutionary histories. (iii) Functional diversity (FD): a measure that considers not only species abundances but also species? traits. 2. We integrate the three dimensions of diversity under a unified framework of Hill numbers and their generalizations. Our TD quantifies the effective number of equally-abundant species, PD quantifies the effective total branch length, mean-PD (PD divided by tree depth) quantifies the effective number of equally-divergent lineages, and FD quantifies the effective number of equally-distinct virtual functional groups (or functional ?species?). Thus, TD, mean-PD and FD are all in the same units of species/lineage equivalents and can be meaningfully compared. 3. Like species richness, empirical TD, PD and FD based on sampling data, depend on sampling effort and sample completeness. For TD (Hill numbers), the iNEXT (interpolation and extrapolation) standardization was developed for standardizing sample size or sample completeness (as measured by sample coverage, the fraction of individuals that belong to the observed species) to make objective comparisons across studies. This paper extends the iNEXT method to the iNEXT.3D standardization to encompass all three dimensions of diversity via sample-size- and sample-coverage-based rarefaction and extrapolation under the unified framework. The asymptotic diversity estimates (i.e., sample size tends to infinity and sample coverage tends to unity) are also derived. In addition to individual-based abundance data, the proposed iNEXT.3D standardization is adapted to deal with incidence-based occurrence data. 4. We apply the integrative framework and the proposed iNEXT.3D standardization to measure temporal alpha-diversity changes for estuarine fish assemblage data spanning four decades. The influence of environmental drivers on diversity change are also assessed. Our analysis informs a mechanistic interpretation of biodiversity change in the three dimensions of diversity. The accompanying freeware, iNEXT.3D, developed during this project, facilitates all computation and graphics.PostprintPeer reviewe

    Temporal turnover and the maintenance of diversity in ecological assemblages

    Get PDF
    Temporal variation in species abundances occurs in all ecological communities. Here, we explore the role that this temporal turnover plays in maintaining assemblage diversity. We investigate a three-decade time series of estuarine fishes and show that the abundances of the individual species fluctuate asynchronously around their mean levels. We then use a time-series modelling approach to examine the consequences of different patterns of turnover, by asking how the correlation between the abundance of a species in a given year and its abundance in the previous year influences the structure of the overall assemblage. Classical diversity measures that ignore species identities reveal that the observed assemblage structure will persist under all but the most extreme conditions. However, metrics that track species identities indicate a narrower set of turnover scenarios under which the predicted assemblage resembles the natural one. Our study suggests that species diversity metrics are insensitive to change and that measures that track species ranks may provide better early warning that an assemblage is being perturbed. It also highlights the need to incorporate temporal turnover in investigations of assemblage structure and function

    Landscape-scale forest loss as a catalyst of population and biodiversity change

    Get PDF
    The BioTIME database was supported by ERC AdG BioTIME 250189 and ERC PoC BioCHANGE 727440. We thank the ERC projects BioTIME and BioCHANGE for supporting the initial data synthesis work that led to this study, and the Leverhulme Centre for Anthropocene Biodiversity for continued funding of the database. Also supported by a Carnegie-Caledonian PhD Scholarship and NERC doctoral training partnership grant NE/L002558/1 (G.N.D.), a Leverhulme Fellowship and the Leverhulme Centre for Anthropocene Biodiversity (M.D.), Leverhulme Project Grant RPG-2019-402 (A.E.M. and M.D.), and the German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (funded by the German Research Foundation; FZT 118, S.A.B.).Global biodiversity assessments have highlighted land-use change as a key driver of biodiversity change. However, there is little empirical evidence of how habitat transformations such as forest loss and gain are reshaping biodiversity over time. We quantified how change in forest cover has influenced temporal shifts in populations and ecological assemblages from 6090 globally distributed time series across six taxonomic groups. We found that local-scale increases and decreases in abundance, species richness, and temporal species replacement (turnover) were intensified by as much as 48% after forest loss. Temporal lags in population- and assemblage-level shifts after forest loss extended up to 50 years and increased with species’ generation time. Our findings that forest loss catalyzes population and biodiversity change emphasize the complex biotic consequences of land-use change.PostprintPeer reviewe

    BioTIME: A Database of Biodiversity Time Series for the Anthropocene

    Get PDF
    Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates

    Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes

    Get PDF
    Abstract Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined. We compiled global gridded datasets on climate change, land-use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world. We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo-Pacific with high climate change and high fishing). We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers. Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world.Peer reviewe

    The geography of biodiversity change in marine and terrestrial assemblages

    Get PDF
    This work was supported by funding to the sChange working group through sDiv, the synthesis center of iDiv, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118). S.A.B., H.B., J.M.C., J.H., and M.W. were supported by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. S.R.S. was supported by U.S. National Science Foundation grant 1400911. LHA was supported by Fundação para a Ciência e Tecnologia, Portugal (POPH/FSE SFRH/BD/90469/2012), and by the Jane and Aatos Erkko Foundation. M.D. was supported by a Leverhulme Trust Fellowship. A.E.M., F.M., and M.D. were supported by ERC AdG BioTIME 250189 and PoC BioCHANGE 727440. A.G. is supported by the Liber Ero Chair in Biodiversity Conservation.Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.PostprintPostprintPeer reviewe

    Estimating species relative abundances from museum records

    Get PDF
    Funding: C.F., U.B. and D.J.R. acknowledge COST Action ‘European Soil-Biology Data Warehouse for Soil Protection’ (EUdaphobase), CA18237, supported by COST (European Cooperation in Science and Technology). AEM thanks the Leverhulme Trust (RPG-2019-401). D.B.B. was supported by an NSF Postdoc Research Fellowship in Biology (NSF 000733206), S.M.R. was supported by an NSERC Discovery Grant Author Contributions, A.V.S. was supported by NSF 1755336, C.S.M was supported by NSF 1398620 and N.J.G was supported by NSF 2019470.1. Dated, geo-referenced museum specimens are a rich data source for reconstructing species' distribution and abundance patterns. However, museum records are potentially biased towards over-representation of rare species, and it is unclear whether museum records can be used to estimate relative abundance in the field. 2. We assembled 17 coupled field and museum datasets to quantitatively compare relative abundance estimates with the Dirichlet distribution. Collectively, these datasets comprise 73,039 museum records and 1,405,316 field observations of 2,240 species. 3. Although museum records of rare species overestimated relative abundance by 1-fold to over 100-fold (median study = 9.0), the relative abundance of species estimated from museum occurrence records was strongly correlated with relative abundance estimated from standardized field surveys (r2 range of 0.10-0.91, median study = 0.43). 4. These analyses provide a justification for estimating species relative abundance with carefully curated museum occurrence records, which may allow for the detection of temporal or spatial shifts in the rank ordering of common and rare species.Publisher PDFPeer reviewe
    corecore