11 research outputs found

    Identification of new biomarkers in Prostate Cancer

    Full text link
    Trabajo de fin de máster en Bioinformática y Biología ComputacionalBackground Prostate cancer (PC) is one of the most heritable tumours as 57% of the interindividual risk is attributed to genetic factors. Germline mutations in DNA damage and repair (DDR) genes have been found in up to 11.8% of men with metastatic castration resistant prostate cancer (mCRPC), but the spectrum and prevalence of these mutations in mCRPC Spanish patients has not been established yet. Methods The germline DNA from two cohorts of mCRPC Spanish patients (419 and 93 from PROREPAIR-B and PRORADIUM) were screened for mutations in 107 and 55 DDR genes, respectively. We also analysed germline variants from the general population included in Exome Aggregation Consortium (ExAC) and CIBERER Spanish Variant Server (CSVS). Computational tools and databases such as ANNOVAR, ClinVar and dbNSFP were used to associate the phenotypic effect of the identified variants, followed by their classification by using the guidelines of the American College of Medical Genetics and Genomics. We also used Pfam and Interactome3D databases to analyse the distribution of pathogenic variants across protein sequences and three-dimensional structures. Results A total of 72 germline DDR (gDDR) pathogenic mutations were identified in 68 mCRPC patients (16.2%) in PROREPAIR-B, and 13 pathogenic mutations in 14 mCRPC patients (19.4%) in the PRORADIUM cohorts. The most recurrent mutated gene in PROREPAIR-B and PRORADIUM was BRCA2, with a significantly higher prevalence in Spanish cohorts than in the general non-cancer population (CSVS P< .001 and ExAC P < .001). Structural analysis in some of the DDR protein-coding genes affected revels clustering of the pathogenic variants in hotspots for different tumour types. Conclusions The incidence of germline mutations in genes related to the DDR processes in Spanish mCRPC patients is higher than in general non-cancer population, with BRCA2 as the most recurrent mutated gene. We also suggested that BRCA2 could be a key factor for the advance disease

    Recommendations for the classification of germline variants in the exonuclease domain of POLE and POLD1

    Full text link
    BackgroundGermline variants affecting the proofreading activity of polymerases epsilon and delta cause a hereditary cancer and adenomatous polyposis syndrome characterized by tumors with a high mutational burden and a specific mutational spectrum. In addition to the implementation of multiple pieces of evidence for the classification of gene variants, POLE and POLD1 variant classification is particularly challenging given that non-disruptive variants affecting the proofreading activity of the corresponding polymerase are the ones associated with cancer. In response to an evident need in the field, we have developed gene-specific variant classification recommendations, based on the ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology) criteria, for the assessment of non-disruptive variants located in the sequence coding for the exonuclease domain of the polymerases.MethodsA training set of 23 variants considered pathogenic or benign was used to define the usability and strength of the ACMG/AMP criteria. Population frequencies, computational predictions, co-segregation data, phenotypic and tumor data, and functional results, among other features, were considered.ResultsGene-specific variant classification recommendations for non-disruptive variants located in the exonuclease domain of POLE and POLD1 were defined. The resulting recommendations were applied to 128 exonuclease domain variants reported in the literature and/or public databases. A total of 17 variants were classified as pathogenic or likely pathogenic, and 17 as benign or likely benign.ConclusionsOur recommendations, with room for improvement in the coming years as more information become available on carrier families, tumor molecular characteristics and functional assays, are intended to serve the clinical and scientific communities and help improve diagnostic performance, avoiding variant misclassifications

    Identificación de nuevos biomarcadores en cáncer de próstata.

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de Lectura: 21-12-202

    Dynamic remodeling of histone modifications in response to osmotic stress in Saccharomyces cerevisiae

    Get PDF
    BACKGROUND: Specific histone modifications play important roles in chromatin functions; i.e., activation or repression of gene transcription. This participation must occur as a dynamic process. Nevertheless, most of the histone modification maps reported to date provide only static pictures that link certain modifications with active or silenced states. This study, however, focuses on the global histone modification variation that occurs in response to the transcriptional reprogramming produced by a physiological perturbation in yeast. RESULTS: We did a genome-wide chromatin immunoprecipitation analysis for eight specific histone modifications before and after saline stress. The most striking change was rapid acetylation loss in lysines 9 and 14 of H3 and in lysine 8 of H4, associated with gene repression. The genes activated by saline stress increased the acetylation levels at these same sites, but this acetylation process was quantitatively minor if compared to that of the deacetylation of repressed genes. The changes in the tri-methylation of lysines 4, 36 and 79 of H3 and the di-methylation of lysine 79 of H3 were slighter than those of acetylation. Furthermore, we produced new genome-wide maps for seven histone modifications, and we analyzed, for the first time in S. cerevisiae, the genome-wide profile of acetylation of lysine 8 of H4. CONCLUSIONS: This research reveals that the short-term changes observed in the post-stress methylation of histones are much more moderate than those of acetylation, and that the dynamics of the acetylation state of histones during activation or repression of transcription is a much quicker process than methylation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-247) contains supplementary material, which is available to authorized users

    Systematic Analysis of FASTK Gene Family Alterations in Cancer

    Get PDF
    The FASTK family of proteins have been recently reported to play a key role in the post-transcriptional regulation of mitochondrial gene expression, including mRNA stability and translation. Accumulated studies have provided evidence that the expression of some FASTK genes is altered in certain types of cancer, in agreement with the central role of mitochondria in cancer development. Here, we obtained a pan-cancer overview of the genomic and transcriptomic alterations of FASTK genes. FASTK, FASTKD1, FASTKD3 and FASTKD5 showed the highest rates of genetic alterations. FASTK and FASTKD3 alterations consisted mainly of amplifications that were seen in more than 8% of ovarian and lung cancers, respectively. FASTKD1 and FASTKD5 were the most frequently mutated FASTK genes, and the mutations were identified in 5–7% of uterine cancers, as well as in 4% of melanomas. Our results also showed that the mRNA levels of all FASTK members were strongly upregulated in esophageal, stomach, liver and lung cancers. Finally, the protein-protein interaction network for FASTK proteins uncovers the interaction of FASTK, FASTKD2, FASTKD4 and FASTKD5 with cancer signaling pathways. These results serve as a starting point for future research into the potential of the FASTK family members as diagnostic and therapeutic targets for certain types of cancer

    Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex

    Get PDF
    Histone acetylation affects several aspects of gene regulation, from chromatin remodelling to gene expression, by modulating the interplay between chromatin and key transcriptional regulators. The exact molecular mechanism underlying acetylation patterns and crosstalk with other epigenetic modifications requires further investigation. In budding yeast, these epigenetic markers are produced partly by histone acetyltransferase enzymes, which act as multi-protein complexes. The Sas3-dependent NuA3 complex has received less attention than other histone acetyltransferases (HAT), such as Gcn5-dependent complexes. Here, we report our analysis of Sas3p-interacting proteins using tandem affinity purification (TAP), coupled with mass spectrometry. This analysis revealed Pdp3p, a recently described component of NuA3, to be one of the most abundant Sas3p-interacting proteins. The PDP3 gene, was TAP-tagged and protein complex purification confirmed that Pdp3p co-purified with the NuA3 protein complex, histones, and several transcription-related and chromatin remodelling proteins. Our results also revealed that the protein complexes associated with Sas3p presented HAT activity even in the absence of Gcn5p and vice versa. We also provide evidence that Sas3p cannot substitute Gcn5p in acetylation of lysine 9 in histone H3 in vivo. Genome-wide occupancy of Sas3p using ChIP-on-chip tiled microarrays showed that Sas3p was located preferentially within the 5′-half of the coding regions of target genes, indicating its probable involvement in the transcriptional elongation process. Hence, this work further characterises the function and regulation of the NuA3 complex by identifying novel post-translational modifications in Pdp3p, additional Pdp3p-co-purifying chromatin regulatory proteins involved in chromatin-modifying complex dynamics and gene regulation, and a subset of genes whose transcriptional elongation is controlled by this complex

    Role of POLE and POLD1 in familial cancer

    Get PDF
    Domini de l'exonucleasa; Càncer colorectal hereditari; Fenotip ultramutatDominio exonucleasa; Cáncer colorrectal hereditario; Fenotipo ultramutadoExonuclease domain; Hereditary colorectal cancer; Ultramutated phenotypePurpose Germline pathogenic variants in the exonuclease domain (ED) of polymerases POLE and POLD1 predispose to adenomatous polyps, colorectal cancer (CRC), endometrial tumors, and other malignancies, and exhibit increased mutation rate and highly specific associated mutational signatures. The tumor spectrum and prevalence of POLE and POLD1 variants in hereditary cancer are evaluated in this study. Methods POLE and POLD1 were sequenced in 2813 unrelated probands referred for genetic counseling (2309 hereditary cancer patients subjected to a multigene panel, and 504 patients selected based on phenotypic characteristics). Cosegregation and case–control studies, yeast-based functional assays, and tumor mutational analyses were performed for variant interpretation. Results Twelve ED missense variants, 6 loss-of-function, and 23 outside-ED predicted-deleterious missense variants, all with population allele frequencies <1%, were identified. One ED variant (POLE p.Met294Arg) was classified as likely pathogenic, four as likely benign, and seven as variants of unknown significance. The most commonly associated tumor types were colorectal, endometrial and ovarian cancers. Loss-of-function and outside-ED variants are likely not pathogenic for this syndrome. Conclusions Polymerase proofreading–associated syndrome constitutes 0.1–0.4% of familial cancer cases, reaching 0.3–0.7% when only CRC and polyposis are considered. ED variant interpretation is challenging and should include multiple pieces of evidence.We thank Gemma Aiza, Mireia Menéndez, Sara González, and Xavier Muñoz for support, and Biobanc HUB-ICO-IDIBELL, integrated in the Spanish Platform Biobanks Network and funded by Instituto de Salud Carlos III (PT17/0015/0024) and Xarxa Bancs de Tumors de Catalunya sponsored by Pla Director d’Oncologia de Catalunya. This work was funded by the Spanish Ministry of Science and Innovation, cofunded by FEDER funds (SAF2016-80888-R, SAF2015-68016-R, Severo Ochoa SVP-2014-068895 contract [L.M.-P.]); Instituto de Salud Carlos III (PI16/00563, PI16/00588, PI14/00613, PI19/00553, CIBERONC CB16/12/00234, CIBERESP, Sara Borrell contract [P.M.]); Government of Catalonia [AGAUR 2017SGR1282, CERCA Program]; and Fundación Olga Torres. This study was facilitated by COST Action CA17118, supported by COST (European Cooperation in Science and Technology)

    Geleophysic dysplasia: novel missense variants and insights into ADAMTSL2 intracellular trafficking

    No full text
    Geleophysic dysplasia (GPHYSD1, MIM231050; GPHYSD2, MIM614185; GPHYSD3, MIM617809) is an autosomal disorder characterized by short-limb dwarfism, brachydactyly, cardiac valvular disease, and laryngotracheal stenosis. Mutations in ADAMTSL2, FBN1, and LTBP3 genes are responsible for this condition. We found that three previously described cases of GPHYSD diagnosed clinically were homozygote or compound heterozygotes for five ADAMTSL2 variants, four of which not being previously reported. By electron microscopy, skin fibroblasts available in one case homozygote for an ADAMTSL2 variant showed a defective intracellular localization of mutant ADAMTSL2 protein that did not accumulate within lysosome-like intra-cytoplasmic inclusions. Moreover, this mutant ADAMTSL2 protein was less secreted in medium and resulted in increased SMAD2 phosphorylation in transfected HEK293 cells.This work was supported by Fondazione Telethon, Italy (TCBP37TELC and TCBMT3TELD) to N.B.-P. We are grateful to John Tolmie for providing DNA sample of one the case

    Role of POLE and POLD1 in familial cancer

    Get PDF
    Purpose: Germline pathogenic variants in the exonuclease domain (ED) of polymerases POLE and POLD1 predispose to adenomatous polyps, colorectal cancer (CRC), endometrial tumors, and other malignancies, and exhibit increased mutation rate and highly specific associated mutational signatures. The tumor spectrum and prevalence of POLE and POLD1 variants in hereditary cancer are evaluated in this study. Methods: POLE and POLD1 were sequenced in 2813 unrelated probands referred for genetic counseling (2309 hereditary cancer patients subjected to a multigene panel, and 504 patients selected based on phenotypic characteristics). Cosegregation and case-control studies, yeast-based functional assays, and tumor mutational analyses were performed for variant interpretation. Results: Twelve ED missense variants, 6 loss-of-function, and 23 outside-ED predicted-deleterious missense variants, all with population allele frequencies <1%, were identified. One ED variant (POLE p.Met294Arg) was classified as likely pathogenic, four as likely benign, and seven as variants of unknown significance. The most commonly associated tumor types were colorectal, endometrial and ovarian cancers. Loss-of-function and outside-ED variants are likely not pathogenic for this syndrome. Conclusions: Polymerase proofreading-associated syndrome constitutes 0.1-0.4% of familial cancer cases, reaching 0.3-0.7% when only CRC and polyposis are considered. ED variant interpretation is challenging and should include multiple pieces of evidence

    Role of POLE and POLD1 in familial cancer

    No full text
    [Purpose]: Germline pathogenic variants in the exonuclease domain (ED) of polymerases POLE and POLD1 predispose to adenomatous polyps, colorectal cancer (CRC), endometrial tumors, and other malignancies, and exhibit increased mutation rate and highly specific associated mutational signatures. The tumor spectrum and prevalence of POLE and POLD1 variants in hereditary cancer are evaluated in this study. [Methods]: POLE and POLD1 were sequenced in 2813 unrelated probands referred for genetic counseling (2309 hereditary cancer patients subjected to a multigene panel, and 504 patients selected based on phenotypic characteristics). Cosegregation and case–control studies, yeast-based functional assays, and tumor mutational analyses were performed for variant interpretation. [Results]: Twelve ED missense variants, 6 loss-of-function, and 23 outside-ED predicted-deleterious missense variants, all with population allele frequencies <1%, were identified. One ED variant (POLE p.Met294Arg) was classified as likely pathogenic, four as likely benign, and seven as variants of unknown significance. The most commonly associated tumor types were colorectal, endometrial and ovarian cancers. Loss-of-function and outside-ED variants are likely not pathogenic for this syndrome. [Conclusions]: Polymerase proofreading–associated syndrome constitutes 0.1–0.4% of familial cancer cases, reaching 0.3–0.7% when only CRC and polyposis are considered. ED variant interpretation is challenging and should include multiple pieces of evidence.This work was funded by the Spanish Ministry of Science and Innovation, cofunded by FEDER funds (SAF2016-80888-R, SAF2015-68016-R, Severo Ochoa SVP-2014-068895 contract [L.M.-P.]); Instituto de Salud Carlos III (PI16/00563, PI16/00588, PI14/00613, PI19/00553, CIBERONC CB16/12/00234, CIBERESP, Sara Borrell contract [P.M.]); Government of Catalonia [AGAUR 2017SGR1282, CERCA Program]; and Fundación Olga Torres. This study was facilitated by COST Action CA17118, supported by COST (European Cooperation in Science and Technology)
    corecore