145 research outputs found

    The Fantasy and Symbolism of Religious Poetry?A Case Study of The Waste Land, Paradise Lost and Prometheus Unbound

    Get PDF
    Mesoporous silica SBA-15 in the form of 10-30 μm sized sheets with unusually large ordered pores has been synthesized using heptane as a cosolvent in the presence of NH4F. The resulting morphology of 400 nm thick sheets that contain easily accessed, hexagonally arranged, 18 nm sized pores running parallel to sheet normal has not been previously reported. The material has a BET surface area of 541 m2/g, large pore volume of 1.69 cm3/g and ordered mesopore structure with a narrow pore size distribution around 18 nm. A mechanism for sheet formation based on heptane droplets acting as sites for self assembling of silica crystallites is suggested.Original Publication:Emma Johansson, Jose Manuel Cordoba and Magnus Odén, Synthesis and characterization of large mesoporous silica SBA-15 sheets with ordered accessible 18 nm pores, 2009, Materials Letters, (63), 24-25, 2129-2131.http://dx.doi.org/10.1016/j.matlet.2009.07.013Copyright: Elsevier Science B.V., Amsterdam.http://www.elsevier.com

    Шляхи удосконалення підготовки учнів до олімпіад з фізики

    Get PDF
    (uk) Стаття присвячена проблемі формування основ методики складання задач та завдань для олімпіад з фізики учнів середніх навчальних закладів освіти.(ru) Статья посвящена проблеме формирования основ методики составления задач и заданий для олимпиад по физике учащихся средних учебных заведений образования

    Significant elastic anisotropy in Ti1x_{1-x}Alx_xN alloys

    Full text link
    Strong compositional-dependent elastic properties have been observed theoretically and experimentally in Ti1x_{1-x}Alx_x N alloys. The elastic constant, C11_{11}, changes by more than 50% depending on the Al-content. Increasing the Al-content weakens the average bond strength in the local octahedral arrangements resulting in a more compliant material. On the other hand, it enhances the directional (covalent) nature of the nearest neighbor bonds that results in greater elastic anisotropy and higher sound velocities. The strong dependence of the elastic properties on the Al-content offers new insight into the detailed understanding of the spinodal decomposition and age hardening in Ti1x_{1-x}Alx_xN alloys.Comment: 3 figures, 3 page

    Anharmonicity changes the solid solubility of an alloy at high temperatures

    Get PDF
    We have developed a method to accurately and efficiently determine the vibrational free energy as a function of temperature and volume for substitutional alloys from first principles. Taking Ti1x_{1-x}Alx_xN alloy as a model system, we calculate the isostructural phase diagram by finding the global minimum of the free energy, corresponding to the true equilibrium state of the system. We demonstrate that the anharmonic contribution and temperature dependence of the mixing enthalpy have a decisive impact on the calculated phase diagram of a Ti1x_{1-x}Alx_xN alloy, lowering the maximum temperature for the miscibility gap from 6560 K to 2860 K. Our local chemical composition measurements on thermally aged Ti0.5_{0.5}Al0.5_{0.5}N alloys agree with the calculated phase diagram.Comment: 4 pages, 5 figures, supplementary materia

    Growth and thermal stability of TiN/ZrAlN: Effect of internal interfaces

    Get PDF
    Wear resistant hard films comprised of cubic transition metal nitride (c-TMN) and metastable c-AlN with coherent interfaces have a confined operating envelope governed by the limited thermal stability of metastable phases. However, equilibrium phases (c-TMN and wurtzite(w)-AlN) forming semicoherent interfaces during film growth offer higher thermal stability. We demonstrate this concept for a model multilayer system with TiN and ZrAlN layers where the latter is a nanocomposite of ZrN- and AlN- rich domains. The interfaces between the domains are tuned by changing the AlN crystal structure by varying the multilayer architecture and growth temperature. The interface energy minimization at higher growth temperature leads to formation of semicoherent interfaces between w-AlN and c-TMN during growth of 15 nm thin layers. Ab initio calculations predict higher thermodynamic stability of semicoherent interfaces between c-TMN and w-AlN than isostructural coherent interfaces between c-TMN and c-AlN. The combination of a stable interface structure and confinement of w-AlN to nm-sized domains by its low solubility in c-TMN in a multilayer, results in films with a stable hardness of 34 GPa even after annealing at 1150 °C.Peer ReviewedPostprint (author's final draft

    Mechanical strength of ground WC-Co cemented carbides after coating deposition

    Get PDF
    Manufacturing of hardmetal tools often involves surface grinding, ion etching and final coating. Each stage throughout the manufacturing chain introduces surface integrity changes which may be critical for defining the final mechanical behavior of the coated tools. Within this context, an experimental test program has been developed to assess the influence of a coating (TiN) deposition on surface integrity and transverse rupture strength of a previously ground fine-grained WC-Co grade substrate. Four different substrate surface finish conditions (prior to ion etching and coating) were evaluated: as sintered (AS), ground (G), polished (P), and ground plus high temperature annealing (GTT). Surface integrity and fracture resistance characterization, complemented with a detailed fractographic analysis, were performed on both uncoated and coated samples. Results show that the surface integrity after grinding has been partly modified during the ion etching and film deposition processes, particularly in terms of a reduced compressive residual stress state at the substrate surface level. Consequently, the grinding induced strength enhancement in hardmetals is reduced for coated specimens. Main reason behind it is the change of nature, location and stress state acting on critical flaw: from processing defects existing at the subsurface (uncoated G specimens) to grinding-induced microcracks located close to the interface between coating and substrate, but within the subsurface of the latter (coated G specimens). This is not the case for AS and P conditions, where flexural strength does not change as a result of ion etching and coating. Finally, fracture resistance increases slightly for GTT specimens after coating process, possibly caused by a beneficial effect of the deposited film on the residual stress state at the surface.Preprin

    Enhanced thermal stability and fracture toughness of TiAlN coatings by Cr, Nb and V-alloying

    Get PDF
    The effect of metal alloying on mechanical properties including hardness and fracture toughness were investigated in three alloys, Ti~0.33Al0.50(Me)~0.17N (Me¿=¿Cr, Nb and V), and compared to Ti0.50Al0.50N, in the as-deposited state and after annealing. All studied alloys display similar as-deposited hardness while the hardness evolution during annealing is found to be connected to phase transformations, related to the alloy's thermal stability. The most pronounced hardening was observed in Ti0.50Al0.50N, while all the coatings with additional metal elements sustain their hardness better and they are harder than Ti0.50Al0.50N after annealing at 1100¿°C. Fracture toughness properties were extracted from scratch tests. In all tested conditions, as-deposited and annealed at 900 and 1100¿°C, Ti0.33Al0.50Nb0.17N show the least surface and sub-surface damage when scratched despite the differences in decomposition behavior and h-AlN formation. Theoretically estimated ductility of phases existing in the coatings correlates well with their crack resistance. In summary, Ti0.33Al0.50Nb0.17N is the toughest alloy in both as-deposited and post-annealed states.Peer ReviewedPostprint (author's final draft

    Temperature-dependent elastic properties of Ti_(1−x)Al_xN alloys

    Get PDF
    Ti_(1−x)Al_xN is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the symmetry imposed force constant temperature dependent effective potential method, which include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C_(11) decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy

    A versatile data acquisition system for capturing electromagnetic emissions in VHF band

    Get PDF
    This research investigates the occurrence of EM emissions from compressed rock and assesses their value as precursors to earthquakes. It is understood that electromagnetic emissions are accompanied by crack generation in the Earth's crust, and effort has been targeted on the analysis of electromagnetic signals preceding seismic events. There is a need for a robust Data Acquisition System for the reliable collection of such signals. The design and deployment of a novel system form part of this research. The EM data collected by the Data Acquisition System is subsequently analysed and correlations are made with natural phenomena. The design of the Data Acquisition System is presented and meets a specification which includes accuracy, robustness, power consumption, remote configurability achieved by the development of a novel architecture for flash memories which significantly increases the live span of these devices. The measuring of electromagnetic emissions should be performed by reliable systems, using devices that fully correspond to the specifications set by the needs of this research. This type of systems is not fully covered by existing commercial devices. These prototype VHF field stations (ground base - electromagnetic variation monitors in VHF band) are located around the Hellenic Are. This region is one of the most seismically active regions in western Eurasia due to subduction of the oceanic African lithosphere beneath the Eurasian plate. After approximately two years of electromagnetic VHF data collection, the final stage of this project took place. In this stage, possible correlation between naturally occurring electromagnetic emissions in VHF band and seismic events within a predefined radius around the observation location is investigated. Supplementary, effects of alternative electromagnetic sources, such as solar activity, is considered. Whilst EM emissions from compressed rocks can be demonstrated in the laboratory, it was found from a two-year evaluation that no reliable correlation with earthquake events could be established. However, significant patterns of activity were detected in EM spectrum and it was shown that these correlate strongly with other naturally occurring phenomena such as solar flares. The Data Acquisition System as developed in this thesis has related applications in long term and remote sensing operations including meteorology, environmental analysis and surveillance.EThOS - Electronic Theses Online ServiceNational Foundation of Scholarships (I.K.Y.)European Social Fund and National Resources - (EPEAEK II) ARXIMIDISGBUnited Kingdo

    Substrate surface finish effects on scratch resistance and failure mechanisms of TiN-coated hardmetals

    Get PDF
    In this study, the influence of substrate surface finish on scratch resistance and associated failure mechanisms is investigated in the case of a TiN-coated hardmetal. Three different surface finish conditions are studied: as-sintered (AS), ground (G), and mirror-like polished (P). For G conditioned samples, scratch tests are conducted both parallel and perpendicular to the direction of the grinding grooves. It is found that coated AS, G and P samples exhibit similar critical load for initial substrate exposure and the same brittle adhesive failure mode. However, the damage scenarios are different, i.e. the substrate exposure is discrete and localized to the scratch tracks for G samples while a more pronounced and continuous exposure is seen for AS and P ones. Aiming to understand the role played by the grinding-induced compressive residual stresses, the study is extended to coated systems where ground substrates are thermal annealed (for relieving stresses) before being ion etched and coated. It yielded lower critical loads and changes in the mechanisms for the scratch-related failure; the latter depending on the relative orientation between scratching and grinding directions
    corecore