14 research outputs found

    A comprehensive profile of circulating RNAs in human serum

    Get PDF
    Non-coding RNA (ncRNA) molecules have fundamental roles in cells and many are also stable in body fluids as extracellular RNAs. In this study, we used RNA sequencing (RNA-seq) to investigate the profile of small non-coding RNA (sncRNA) in human serum. We analyzed 10 billion Illumina reads from 477 serum samples, included in the Norwegian population-based Janus Serum Bank (JSB). We found that the core serum RNA repertoire includes 258 micro RNAs (miRNA), 441 piwi-interacting RNAs (piRNA), 411 transfer RNAs (tRNA), 24 small nucleolar RNAs (snoRNA), 125 small nuclear RNAs (snRNA) and 123 miscellaneous RNAs (misc-RNA). We also investigated biological and technical variation in expression, and the results suggest that many RNA molecules identified in serum contain signs of biological variation. They are therefore unlikely to be random degradation by-products. In addition, the presence of specific fragments of tRNA, snoRNA, Vault RNA and Y_RNA indicates protection from degradation. Our results suggest that many circulating RNAs in serum can be potential biomarkers

    Exposure to a Human Relevant Mixture of Persistent Organic Pollutants or to Perfluorooctane Sulfonic Acid Alone Dysregulates the Developing Cerebellum of Chicken Embryo

    Get PDF
    Acknowledgements This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie grant agreement No. 722634 (http://protected.eu.com/). The authors gratefully acknowledge the Proteomics Core Facility of the University of Aberdeen for their support & assistance in this work. The sequencing service was provided by the Norwegian Sequencing Centre (www.sequencing.uio.no), a national technology platform hosted by the University of Oslo and supported by the "Functional Genomics" and "Infrastructure" programs of the Research Council of Norway and the South-eastern Regional Health Authorities.Peer reviewedPublisher PD

    Microbial Community Composition of Tap Water and Biofilms Treated with or without Copper–Silver Ionization

    No full text
    Copper–silver ionization (CSI) is an in-house water disinfection method primarily installed to eradicate Legionella bacteria from drinking water distribution systems (DWDS). Its effect on the abundance of culturable Legionella and Legionella infections has been documented in several studies. However, the effect of CSI on other bacteria in DWDS is largely unknown. To investigate these effects, we characterized drinking water and biofilm communities in a hospital using CSI, in a neighboring building without CSI, and in treated drinking water at the local water treatment plant. We used 16S rDNA amplicon sequencing and Legionella culturing. The sequencing results revealed three distinct water groups: (1) cold-water samples (no CSI), (2) warm-water samples at the research institute (no CSI), and (3) warm-water samples at the hospital (after CSI; ANOSIM, p < 0.001). Differences between the biofilm communities exposed and not exposed to CSI were less clear (ANOSIM, p = 0.022). No Legionella were cultured, but limited numbers of Legionella sequences were recovered from all 25 water samples (0.2–1.4% relative abundance). The clustering pattern indicated local selection of Legionella types (Kruskal–Wallis, p < 0.001). Furthermore, one unclassified Betaproteobacteria OTU was highly enriched in CSI-treated warm water samples at the hospital (Kruskal–Wallis, p < 0.001)

    Ultralow amounts of DNA from long-term archived serum samples produce high-quality methylomes

    No full text
    BackgroundLong-term stored serum is considered challenging for epigenomic analyses: as there are no cells, circulating DNA is scarce, and amplification removes epigenetic signals. Additionally, pre-analytical treatments and storage might introduce biases and fragmentation to the DNA. In particular, starting with low-input DNA can result in low-diversity libraries. However, successful whole-genome bisulphite sequencing (WGBS) of such serum samples has the potential to open biobanks for epigenetic analyses and deliver novel prediagnostic biomarkers. Here, we perform WGBS using the Accel-NGS library preparation kit on ultralow amounts of DNA from long-term archived samples with diverse pretreatments from the Janus Serum Bank.ResultsNinety-four of the 96 samples produced satisfactory methylation calls; an average of 578 M reads per sample generated a mean coverage of 17x and mean duplication level of 35%. Failed samples were related to poor bisulphite conversion rather than to sequencing or library preparation. We demonstrate the feasibility of WGBS on ultralow DNA yields from serum samples stored up to 48 years.ConclusionsOur results show the potential of large serum biobank collections for future epigenomic studies and biomarker discovery

    Multi-omics approach reveals dysregulated genes during hESCs neuronal differentiation exposure to paracetamol

    No full text
    Summary: Prenatal paracetamol exposure has been associated with neurodevelopmental outcomes in childhood. Pharmacoepigenetic studies show differences in cord blood DNA methylation between unexposed and paracetamol-exposed neonates, however, causality and impact of long-term prenatal paracetamol exposure on brain development remain unclear. Using a multi-omics approach, we investigated the effects of paracetamol on an in vitro model of early human neurodevelopment. We exposed human embryonic stem cells undergoing neuronal differentiation with paracetamol concentrations corresponding to maternal therapeutic doses. Single-cell RNA-seq and ATAC-seq integration identified paracetamol-induced chromatin opening changes linked to gene expression. Differentially methylated and/or expressed genes were involved in neurotransmission and cell fate determination trajectories. Some genes involved in neuronal injury and development-specific pathways, such as KCNE3, overlapped with differentially methylated genes previously identified in cord blood associated with prenatal paracetamol exposure. Our data suggest that paracetamol may play a causal role in impaired neurodevelopment

    An extension to: Systematic assessment of commercially available low-input miRNA library preparation kits

    No full text
    High-throughput sequencing has emerged as the favoured method to study microRNA (miRNA) expression, but biases introduced during library preparation have been reported. We recently compared the performance (sensitivity, reliability, titration response and differential expression) of six commercially-available kits on synthetic miRNAs and human RNA, where library preparation was performed by the vendors. We hereby supplement this study with data from two further commonly used kits (NEBNext, NEXTflex) whose manufacturers initially declined to participate. NEXTflex demonstrated the highest sensitivity, which may reflect its use of partially-randomized adapter sequences, but overall performance was lower than the QIAseq and TailorMix kits. NEBNext showed intermediate performance. We reaffirm that biases are kit specific, complicating the comparison of miRNA datasets generated using different kits

    An extension to: Systematic assessment of commercially available low-input miRNA library preparation kits

    Get PDF
    High-throughput sequencing has emerged as the favoured method to study microRNA (miRNA) expression, but biases introduced during library preparation have been reported. We recently compared the performance (sensitivity, reliability, titration response and differential expression) of six commercially-available kits on synthetic miRNAs and human RNA, where library preparation was performed by the vendors. We hereby supplement this study with data from two further commonly used kits (NEBNext, NEXTflex) whose manufacturers initially declined to participate. NEXTflex demonstrated the highest sensitivity, which may reflect its use of partially-randomized adapter sequences, but overall performance was lower than the QIAseq and TailorMix kits. NEBNext showed intermediate performance. We reaffirm that biases are kit specific, complicating the comparison of miRNA datasets generated using different kits

    A comprehensive profile of circulating RNAs in human serum

    No full text
    <p>Non-coding RNA (ncRNA) molecules have fundamental roles in cells and many are also stable in body fluids as extracellular RNAs. In this study, we used RNA sequencing (RNA-seq) to investigate the profile of small non-coding RNA (sncRNA) in human serum. We analyzed 10 billion Illumina reads from 477 serum samples, included in the Norwegian population-based Janus Serum Bank (JSB). We found that the core serum RNA repertoire includes 258 micro RNAs (miRNA), 441 piwi-interacting RNAs (piRNA), 411 transfer RNAs (tRNA), 24 small nucleolar RNAs (snoRNA), 125 small nuclear RNAs (snRNA) and 123 miscellaneous RNAs (misc-RNA). We also investigated biological and technical variation in expression, and the results suggest that many RNA molecules identified in serum contain signs of biological variation. They are therefore unlikely to be random degradation by-products. In addition, the presence of specific fragments of tRNA, snoRNA, Vault RNA and Y_RNA indicates protection from degradation. Our results suggest that many circulating RNAs in serum can be potential biomarkers.</p
    corecore