177 research outputs found

    An easy synthesis for preparing bio-based hybrid adsorbent useful for fast adsorption of polar pollutants

    Get PDF
    For the first time, γ-Al2O3 and Bio-Based Substances (BBS) hybrids (A-BBS) were prepared through a simple electrostatic interaction occurring between alumina, used as a support, and BBS (Bio-Based Substance from composted biowastes) carrying positive and negative charges, respectively. We evaluated the optimal amount of BBS to be immobilized on the support and the stability of the resulting A-BBS in order to use this novel hybrid material as an adsorbent for the removal of polar pollutants. Characterization was carried out by X-Ray Diffraction (XRD) for evaluating the crystal structure of the support, Fourier transform infrared spectroscopy (FT-IR) to evidence the presence of BBS on the hybrid material, thermogravimetric analysis (TGA) to measure the thermal stability of the hybrid materials and quantify the BBS amount immobilized on the support, N2 adsorption at 77 K for the evaluation of the surface area and porosity of the systems, Zeta potential measurements to evaluate the effect of BBS immobilization on the surface charge of the particles and choose the substrates possibly interacting with them. Firstly, we tested the adsorption capability of three samples differently coated with BBS toward cationic species considering various adsorbate/adsorbent ratio. Crystal Violet (CV) was chosen as model pollutant to compare the performance of the hybrid materials with those of other materials described in the literature. The adsorption data were modeled by Langmuir and Freundlich adsorption isotherms. Then, we studied the adsorption capability of the developed material towards molecules with different structures; for this purpose, two contaminants of emerging concerns (carbamazepine and atenolol) were tested. The results indicate that A-BBS could be applied in wastewater treatment for the removal of a significant amount of polar species. In addition, a comparison with literature data concerning CV adsorption was carried out in order to evaluate the environmental impact of synthetic routes used to prepare different adsorbents

    Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron (EGU2018-3906)

    Get PDF
    Although the importance of Fe (hydr)oxides for soil organic matter (OM) stabilization and C retention by surface adsorption is well known, only recently has coprecipitation been recognized as an important process responsible for C storage in hydromorphic soils, such as rice paddy soils. Under periodic fluctuations in redox conditions the interaction between dissolved organic carbon (DOC) and Fe (hydr)oxides may not only involve organic coatings on mineral surfaces, but also Fe-DOC coprecipitates that form during the oxidation of soil solutions containing important amounts of DOC and Fe2+. The aim of this work was to provide new insights into the mechanisms involved, and the amount and selectivity of C retained during the coprecipitation process. A series of Fe-OM associations with increasing C loading was synthesized at pH 6 by surface adsorption or coprecipitation (oxidation of ferrous iron) utilizing rice-straw derived dissolved organic matter. The kinetics of Fe2+ oxidation and complexation, and the total and selective retention of DOC during the coprecipitation process were evaluated. Moreover, synthesized associations, as well as a field coprecipitate collected in situ from a paddy soil, were studied by X-ray diffraction, N2 gas adsorption-desorption isotherms, electrophoretic mobility measurements and thermogravimetric analyses. Coprecipitation resulted in higher organic C contents (49-213 mg g-1) with respect to adsorbed systems (18-47 mg g-1), and favoured the inclusion of OM within highly aggregated associations having particularly low BET specific surface areas. Coprecipitates sampled in situ also showed a similar retention of organic C confirming that this process may contribute significantly to the OM stabilization in paddy topsoils. The mechanisms involved in the retention of straw-derived DOM during coprecipitation were shown to be strongly dependent on C/Fe ratio of the solution. Although the overall coprecipitation process was highly selective for aromatic constituents, initial complexation of Fe2+ and precipitation as C-rich metal salts involved the selective interaction with aliphatic carboxylic constituents. The contribution of the latter mechanism to total C retention during coprecipitation was shown to increase with increasing solution C/Fe ratios. These aliphatic complexes formed during coprecipitation may play an important, though often underestimated, role in C stabilization in hydromorphic. The process-related selectivity of specific constituents of DOM during coprecipitation highlights the involvement of specific mechanisms, i.e. complexation, adsorption, salt precipitation, while ruling out non-selective, physical occlusion of OM within the forming coprecipitat

    Role of leukocytes, gender, and symptom domains in the influence of depression on hospitalization and mortality risk: Findings from the Moli-sani study

    Get PDF
    Background: Major depressive disorder is a mental illness associated with chronic conditions like cardiovascular disease (CVD). Circulating inflammation has been proposed as a potential mechanism underlying this link, although the role of specific biomarkers, gender, and symptom domains is not well elucidated. Methods: We performed multivariable Cox regressions of first hospitalization/all-cause mortality and CVD, ischemic heart (IHD), and cerebrovascular disease (CeVD) causes vs. depression severity in an Italian population cohort (N = 13,191; age ≥ 35 years; 49.3% men; 4,856 hospitalizations and 471 deaths, median follow-up 7.28 and 8.24 years, respectively). In models adjusted for age, sex, and socioeconomic status, we estimated the proportion of association explained by C-reactive protein (CRP), platelet count, granulocyte-to-lymphocyte ratio (GLR), and white blood cell count (WBC). Gender-by-depression interaction and gender-stratified analyses were performed. Associations of polychoric factors tagging somatic and cognitive symptoms with incident clinical risks were also tested, as well as the proportion explained by a composite index of circulating inflammation (INFLA score). Results: Significant proportions of the influence of depression on clinical risks were explained by CRP (4.8% on IHD hospitalizations), GLR (11% on all-cause mortality), and WBC (24% on IHD/CeVD hospitalizations). Gender-by-depression interaction was significantly associated only with all-cause mortality (p = 0.03), with moderate depression showing a + 60% increased risk in women, but not in men. Stable associations of somatic, but not of cognitive, symptoms with increased hospitalization risk were observed (+ 16% for all causes, + 14% for CVD causes), with INFLA score explaining small but significant proportions of these associations (2.5% for all causes, 8.6% for IHD causes). Conclusions: These findings highlight the importance of cellular components of inflammation, gender, and somatic depressive symptoms in the link between depression and clinical (especially CVD) risks, pointing to the existence of additional pathways through which depression may play a detrimental effect on the cardiovascular system

    Delineation of Culicoides species by morphology and barcode exemplified by three new species of the subgenus Culicoides (Diptera: Ceratopogonidae) from Scandinavia

    Get PDF
    BACKGROUND: Culicoides biting midges (Diptera: Ceratopogonidae) cause biting nuisance to livestock and humans and are vectors of a range of pathogens of medical and veterinary importance. Despite their economic significance, the delineation and identification of species where only morphology is considered, as well as the evolutionary relationships between species within this genus remains problematic. In recent years molecular barcoding has assisted substantially in the identification of biting midges in the multiple entomological survey projects which were initiated in many European countries following the bluetongue outbreak in 2006–2009. These studies revealed potentially new species and “species-complexes” with large genetic and morphological variability. Here we use molecular barcoding, together with morphological analysis, to study subgenus Culicoides Latreille from Scandinavia with focus on three potentially new species. METHODS: Biting midges were collected at various sites in Denmark and Sweden. Culicoides specimens were described by variation of a fragment of their cytochrome c oxidase subunit 1 (COI) gene sequence and wing, palp and antennal characters. RESULTS: It is shown that three new species initially separated by DNA barcoding with mitochondrial COI can be distinguished by morphological characters. In this context a key to Scandinavian subgenus Culicoides using wing and maxillary palp characters is presented. The key is including the three new species Culicoides boyi, Culicoides selandicus and Culicoides kalix. CONCLUSION: Three new species of Culicoides biting midges were identified and could be identified by both molecular and morphological differences. Evaluation of differences between and within taxa of biting midges using COI barcode yielded a rough estimate of species delineation; interspecies differences across Culicoides subgenera approaches 20%, whereas intraspecies differences are below 4% and in most cases below 1%. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-0750-4) contains supplementary material, which is available to authorized users
    corecore