8 research outputs found

    Biosignature detection by Mars rover equivalent instruments in samples from the CanMars Mars Sample Return Analogue Deployment

    Get PDF
    The University of Winnipeg's HOSERLab was established with funding from the Canada Foundation for Innovation, the Manitoba Research Innovations Fund and the Canadian Space Agency, whose support is gratefully acknowledged. This study was supported with grants from the Canadian Space Agency through their FAST program, NSERC, and UWinnipeg.This work details the laboratory analysis of a suite of 10 samples collected from an inverted fluvial channel near Hanksville, Utah, USA as a part of the CanMars Mars Sample Return Analogue Deployment (MSRAD). The samples were acquired along the rover traverse for detailed off-site analysis to evaluate the TOC and astrobiological significance of the samples selected based on site observations, and to address one of the science goals of the CanMars mission: to evaluate the ability of different analytical techniques being employed by the Mars2020 mission to detect and characterize any present biosignatures. Analytical techniques analogous to those on the ExoMars, MSL and the MER rovers were also applied to the samples. The total organic carbon content of the samples was <0.02% for all but 4 samples, and organic biosignatures were detected in multiple samples by UV–Vis–NIR reflectance spectroscopy and Raman spectroscopy (532 nm, time-resolved, and UV), which was the most effective of the techniques. The total carbon content of the samples is < 0.3 wt% for all but one calcite rich sample, and organic C was not detectable by FTIR. Carotene and chlorophyll were detected in two samples which also contained gypsum and mineral phases of astrobiological importance for paleoenvironment/habitability and biomarker preservation (clays, gypsum, calcite) were detected and characterized by multiple techniques, of which passive reflectance was most effective. The sample selected in the field (S2) as having the highest potential for TOC did not have the highest TOC values, however, when considering the sample mineralogy in conjunction with the detection of organic carbon, it is the most astrobiologically relevant. These results highlight importance of applying multiple techniques for sample characterization and provide insights into their strengths and limitations.PostprintPeer reviewe

    Active lithoautotrophic and methane-oxidizing microbial community in an anoxic, sub-zero, and hypersaline High Arctic spring

    No full text
    Lost Hammer Spring, located in the High Arctic of Nunavut, Canada, is one of the coldest and saltiest terrestrial springs discovered to date. It perennially discharges anoxic (<1 ppm dissolved oxygen), sub-zero (similar to-5 degrees C), and hypersaline (similar to 24% salinity) brines from the subsurface through up to 600 m of permafrost. The sediment is sulfate-rich (1 M) and continually emits gases composed primarily of methane (similar to 50%), making Lost Hammer the coldest known terrestrial methane seep and an analog to extraterrestrial habits on Mars, Europa, and Enceladus. A multi-omics approach utilizing metagenome, metatranscriptome, and single-amplified genome sequencing revealed a rare surface terrestrial habitat supporting a predominantly lithoautotrophic active microbial community driven in part by sulfide-oxidizing Gammaproteobacteria scavenging trace oxygen. Genomes from active anaerobic methane-oxidizing archaea (ANME-1) showed evidence of putative metabolic flexibility and hypersaline and cold adaptations. Evidence of anaerobic heterotrophic and fermentative lifestyles were found in candidate phyla DPANN archaea and CG03 bacteria genomes. Our results demonstrate Mars-relevant metabolisms including sulfide oxidation, sulfate reduction, anaerobic oxidation of methane, and oxidation of trace gases (H-2, CO2) detected under anoxic, hypersaline, and sub-zero ambient conditions, providing evidence that similar extant microbial life could potentially survive in similar habitats on Mars

    The Limits, Capabilities, and Potential for Life Detection with MinION Sequencing in a Paleochannel Mars Analog

    No full text
    No instrument capable of direct life detection has been included on a mission payload to Mars since NASA's Viking missions in the 1970s. This prevents us from discovering whether life is or ever was present on Mars. DNA is an ideal target biosignature since it is unambiguous, nonspecific, and readily detectable with nanopore sequencing. Here, we present a proof-of-concept utilization of the Oxford Nanopore Technologies (ONT) MinION sequencer for direct life detection and show how it can complement results from established space mission instruments. We used nanopore sequencing data from the MinION to detect and characterize the microbial life in a set of paleochannels near Hanksville, UT, with supporting data from X-ray diffraction, reflectance spectroscopy, Raman spectroscopy, and Life Detector Chip (LDChip) microarray immunoassay analyses. These paleochannels are analogs to martian sinuous ridges. The MinION-generated metagenomes reveal a rich microbial community dominated by bacteria and containing radioresistant, psychrophilic, and halophilic taxa. With spectral data and LDChip immunoassays, these metagenomes were linked to the surrounding Mars analog environment and potential metabolisms (e.g., methane production and perchlorate reduction). This shows a high degree of synergy between these techniques for detecting and characterizing biosignatures. We also resolved a prospective lower limit of ∼0.001 ng of DNA required for successful sequencing. This work represents the first determination of the MinION's DNA detection limits beyond ONT recommendations and the first whole metagenome analysis of a sinuous ridge analog.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    Biosignature Detection and MinION Sequencing of Antarctic Cryptoendoliths After Exposure to Mars Simulation Conditions

    No full text
    In the search for life in our Solar System, Mars remains a promising target based on its proximity and similarity to Earth. When Mars transitioned from a warmer, wetter climate to its current dry and freezing conditions, any putative extant life probably retreated into habitable refugia such as the subsurface or the interior of rocks. Terrestrial cryptoendolithic microorganisms (i.e., those inhabiting rock interiors) thus represent possible modern-day Mars analogs, particularly those from the hyperarid McMurdo Dry Valleys in Antarctica. As DNA is a strong definitive biosignature, given that there is no known abiotic chemistry that can polymerize nucleobases, we investigated DNA detection with MinION sequencing in Antarctic cryptoendoliths after an ∼58-sol exposure in MARTE, a Mars environmental chamber capable of simulating martian temperature, pressure, humidity, ultraviolet (UV) radiation, and atmospheric composition, in conjunction with protein and lipid detection. The MARTE conditions resulted in changes in community composition and DNA, proteins, and cell membrane-derived lipids remained detectable postexposure. Of the multitude of extreme environmental conditions on Mars, UV radiation (specifically UVC) is the most destructive to both cells and DNA. As such, we further investigated if a UVC exposure corresponding to ∼278 martian years would impede DNA detection via MinION sequencing. The MinION was able to successfully detect and sequence DNA after this UVC radiation exposure, suggesting its utility for life detection in future astrobiology missions focused on finding relatively recently exposed biomarkers inside possible martian refugia.This work was funded by the Canadian Space Agency Flights and Fieldwork for the Advancement of Science and Technology (FAST), the Natural Sciences and Engineering Research Council of Canada (NSERC) Alexander Graham Bell Canada Graduate Scholarship, the Spanish Ministry of Science and Innovation (MPSL project code: PID2020-114047GB-100), the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM), and the “María Zambrano” excellence grant program (CA3/RSUE/2021-00405), funded by the Spanish Ministry of Universities. Sampling was supported by the NASA ASTEP program and with field support via NSF/OPP (project B-302-M) for the collection of the cryptoendoliths.Peer reviewe

    A Multiplex Immunosensor for Detecting Perchlorate-Reducing Bacteria for Environmental Monitoring and Planetary Exploration

    No full text
    © 2020 Gallardo-Carreño, Moreno-Paz, Aguirre, Blanco, Alonso-Pintado, Raymond-Bouchard, Maggiori, Rivas, Engelbrektson, Whyte and Parro.Perchlorate anions are produced by chemical industries and are important contaminants in certain natural ecosystems. Perchlorate also occurs in some natural and uncontaminated environments such as the Atacama Desert, the high Arctic or the Antarctic Dry Valleys, and is especially abundant on the surface of Mars. As some bacterial strains are capable of using perchlorate as an electron acceptor under anaerobic conditions, their detection is relevant for environmental monitoring on Earth as well as for the search for life on Mars. We have developed an antibody microarray with 20 polyclonal antibodies to detect perchlorate-reducing bacteria (PRB) strains and two crucial and highly conserved enzymes involved in perchlorate respiration: perchlorate reductase and chlorite dismutase. We determined the cross-reactivity, the working concentration, and the limit of detection of each antibody individually and in a multiplex format by Fluorescent Sandwich Microarray Immunoassay. Although most of them exhibited relatively high sensitivity and specificity, we applied a deconvolution method based on graph theory to discriminate between specific signals and cross-reactions from related microorganisms. We validated the system by analyzing multiple bacterial isolates, crude extracts from contaminated reactors and salt-rich natural samples from the high Arctic. The PRB detecting chip (PRBCHIP) allowed us to detect and classify environmental isolates as well as to detect similar strains by using crude extracts obtained from 0.5 g even from soils with low organic-matter levels (<103 cells/g of soil). Our results demonstrated that PRBCHIP is a valuable tool for sensitive and reliable detection of perchlorate-reducing bacteria for research purposes, environmental monitoring and planetary exploration.This work was funded by the Ministry of Economy and Competitiveness, (MINECO)/Fondo Europeo de Desarrollo Regional (FEDER) grant numbers AYA2011-24803, ESP2015-69540-R, and RTI2018-094368-B-I00, and MDM-2017-0737 Unidad de Excelencia “Maria de Maeztu”, Centro de Astrobiología (INTA-CSIC). JA was supported by the Spanish MINECO project MiMevo FIS2017 89773-P and SEV 2017-0712. IG-C was a FPI program fellowship (MINECO)

    Biosignature detection by Mars rover equivalent instruments in samples from the CanMars Mars Sample Return Analogue Deployment

    No full text
    This work details the laboratory analysis of a suite of 10 samples collected from an inverted fluvial channel near Hanksville, Utah, USA as a part of the CanMars Mars Sample Return Analogue Deployment (MSRAD). The samples were acquired along the rover traverse for detailed off-site analysis to evaluate the TOC and astrobiological significance of the samples selected based on site observations, and to address one of the science goals of the CanMars mission: to evaluate the ability of different analytical techniques being employed by the Mars2020 mission to detect and characterize any present biosignatures. Analytical techniques analogous to those on the ExoMars, MSL and the MER rovers were also applied to the samples. The total organic carbon content of the samples was &lt;0.02% for all but 4 samples, and organic biosignatures were detected in multiple samples by UV–Vis–NIR reflectance spectroscopy and Raman spectroscopy (532 nm, time-resolved, and UV), which was the most effective of the techniques. The total carbon content of the samples is &lt; 0.3 wt% for all but one calcite rich sample, and organic C was not detectable by FTIR. Carotene and chlorophyll were detected in two samples which also contained gypsum and mineral phases of astrobiological importance for paleoenvironment/habitability and biomarker preservation (clays, gypsum, calcite) were detected and characterized by multiple techniques, of which passive reflectance was most effective. The sample selected in the field (S2) as having the highest potential for TOC did not have the highest TOC values, however, when considering the sample mineralogy in conjunction with the detection of organic carbon, it is the most astrobiologically relevant. These results highlight importance of applying multiple techniques for sample characterization and provide insights into their strengths and limitations

    Impact of the first wave of COVID-19 epidemy on the surgical management of sigmoid diverticular disease in France: National French retrospective study

    No full text
    International audienceObjective: To analyze the surgical management of sigmoid diverticular disease (SDD) before, during, and after the first containment rules (CR) for the first wave of COVID-19.Methods: From the French Surgical Association multicenter series, this study included all patients operated on between January 2018 and September 2021. Three groups were compared: A (before CR period: 01/01/18-03/16/20), B (CR period: 03/17/20-05/03/20), and C (post CR period: 05/04/20-09/30/21).Results: A total of 1965 patients (A n = 1517, B n = 52, C n = 396) were included. The A group had significantly more previous SDD compared to the two other groups (p = 0.007), especially complicated (p = 0.0004). The rate of peritonitis was significantly higher in the B (46.1%) and C (38.4%) groups compared to the A group (31.7%) (p = 0.034 and p = 0.014). As regards surgical treatment, Hartmann's procedure was more often performed in the B group (44.2%, vs A 25.5% and C 26.8%, p = 0.01). Mortality at 90 days was significantly higher in the B group (9.6%, vs A 4% and C 6.3%, p = 0.034). This difference was also significant between the A and B groups (p = 0.048), as well as between the A and C groups (p = 0.05). There was no significant difference between the three groups in terms of postoperative morbidity.Conclusion: This study shows that the management of SDD was impacted by COVID-19 at CR, but also after and until September 2021, both on the initial clinical presentation and on postoperative mortality
    corecore