2,607 research outputs found

    Pre-discharge Cardiorespiratory Monitoring in Preterm Infants. the CORE Study

    Get PDF
    Objective: Ensuring cardiorespiratory (CR) stability is essential for a safe discharge. The aim of this study was to assess the impact of a new pre-discharge protocol named CORE on the risk of hospital readmission (RHR). Methods: Preterm infants admitted in our NICU between 2015 and 2018 were randomly assigned to CORE (exposed) or to standard (not-exposed) discharge protocol. CORE included 24 h-clinical observation, followed by 24 h-instrumental CR monitoring only for high-risk infants. RHR 12 months after discharge and length of stay represent the primary and secondary outcomes, respectively. Results: Three hundred and twenty three preterm infants were enrolled. Exposed infants had a lower RHR (log-rank p < 0.05). The difference was especially marked 3 months after discharge (9.09 vs. 21.6%; p = 0.004). The hospital length of stay in exposed and not-exposed infants was 39(26–58) and 43(26–68) days, respectively (p = 0.16). Conclusions: The CORE protocol could help neonatologists to define the best timing for discharge reducing RHR without lengthening hospital stay

    DISTO data on Kpp

    Full text link
    The data from the DISTO Collaboration on the exclusive pp -> p K+ Lambda production acquired at T_p = 2.85 GeV have been re-analysed in order to search for a deeply bound K- pp (= X) state, to be formed in the binary process pp -> K+ X. The preliminary spectra of the DeltaM_{K+} missing-mass and of the M_{p Lambda} invariant-mass show, for large transverse-momenta of protons and kaons, a distinct broad peak with a mass M_X = 2265 +- 2 MeV/c^2 and a width Gamma_X = 118 +- 8 MeV/c^2.Comment: 8 pages, 4 figures. Talk presented at the "10th International Conference on Hypernuclear and Strange Particle Physics" (HYP-X), Tokai, Ibaraki, Japan, September 14th-18th, 2009. To appear in the proceeding

    On the muon neutrino mass

    Get PDF
    During the runs of the PS 179 experiment at LEAR of CERN, we photographed an event of antiproton-Ne absorption, with a complete pi+ -> mu+ ->e+ chain. From the vertex of the reaction a very slow energy pi+ was emitted. The pi+ decays into a mu+ and subsequently the mu+ decays into a positron. At the first decay vertex a muon neutrino was emitted and at the second decay vertex an electron neutrino and a muon antineutrino. Measuring the pion and muon tracks and applying the momentum and energy conservation and using a classical statistical interval estimator, we obtained an experimental upper limit for the muon neutrino mass: m_nu < 2.2 MeV at a 90% confidence level. A statistical analysis has been performed of the factors contributing to the square value of the neutrino mass limit.Comment: 18 pages, 5 eps figure

    Indication of a deeply bound compact K-pp state formed in the pp -> p Lambda K+ reaction at 2.85 GeV

    Get PDF
    We have analyzed data of the DISTO experiment on the exclusive pp -> p Lambda K+ reaction at 2.85 GeV to search for a strongly bound compact K-pp (= X) state to be formed in the pp -> K+ + X reaction. The observed spectra of the K+ missing-mass and the p Lambda invariant-mass with high transverse momenta of p and K+ revealed a broad distinct peak with a mass M_X = 2265 +- 2 (stat) +- 5 (syst) MeV/c2 and a width Gamma_X = 118 +- 8 (stat) +- 10 (syst) MeV.Comment: 4 pages, 4 figure

    K^- Meson Production in the Proton-Proton Reaction at 3.67 GeV/c

    Full text link
    The total cross section of the reaction ppppK+Kpp\to ppK^+K^- has been determined for proton--proton reactions with pbeam=3.67GeV/cp_{beam}=3.67 GeV/c. This represents the first cross section measurement of the ppppKK+pp \to ppK^-K^+ channel near threshold, and is equivalent to the inclusive ppppKXpp\to ppK^-X cross section at this beam momentum. The cross section determined at this beam momentum is about a factor 20 lower than that for inclusive ppppK+Xpp\to ppK^+X meson production at the same CM energy above the corresponding threshold. This large difference in the K+K^+ and KK^- meson inclusive production cross sections in proton-proton reactions is in strong contrast to cross sections measured in sub-threshold heavy ion collisions, which are similar in magnitude at the same energy per nucleon below the respective thresholds.Comment: 12 pages, 3 figures Phys. Lett. B in prin

    Design of chemical space networks incorporating compound distance relationships

    Get PDF
    Networks, in which nodes represent compounds and edges pairwise similarity relationships, are used as coordinate-free representations of chemical space. So-called chemical space networks (CSNs) provide intuitive access to structural relationships within compound data sets and can be annotated with activity information. However, in such similarity-based networks, distances between compounds are typically determined for layout purposes and clarity and have no chemical meaning. By contrast, inter-compound distances as a measure of dissimilarity can be directly obtained from coordinate-based representations of chemical space. Herein, we introduce a CSN variant that incorporates compound distance relationships and thus further increases the information content of compound networks. The design was facilitated by adapting the Kamada-Kawai algorithm. Kamada-Kawai networks are the first CSNs that are based on numerical similarity measures, but do not depend on chosen similarity threshold values

    A Cylindrical GEM Inner Tracker for the BESIII experiment at IHEP

    Full text link
    The Beijing Electron Spectrometer III (BESIII) is a multipurpose detector that collects data provided by the collision in the Beijing Electron Positron Collider II (BEPCII), hosted at the Institute of High Energy Physics of Beijing. Since the beginning of its operation, BESIII has collected the world largest sample of J/{\psi} and {\psi}(2s). Due to the increase of the luminosity up to its nominal value of 10^33 cm-2 s-1 and aging effect, the MDC decreases its efficiency in the first layers up to 35% with respect to the value in 2014. Since BESIII has to take data up to 2022 with the chance to continue up to 2027, the Italian collaboration proposed to replace the inner part of the MDC with three independent layers of Cylindrical triple-GEM (CGEM). The CGEM-IT project will deploy several new features and innovation with respect the other current GEM based detector: the {\mu}TPC and analog readout, with time and charge measurements will allow to reach the 130 {\mu}m spatial resolution in 1 T magnetic field requested by the BESIII collaboration. In this proceeding, an update of the status of the project will be presented, with a particular focus on the results with planar and cylindrical prototypes with test beams data. These results are beyond the state of the art for GEM technology in magnetic field
    corecore