21 research outputs found

    Efficacy and safety of lumasiran for infants and young children with primary hyperoxaluria type 1: 12-month analysis of the phase 3 ILLUMINATE-B trial

    Get PDF
    BACKGROUND: Primary hyperoxaluria type 1 (PH1) is a rare genetic disease that causes progressive kidney damage and systemic oxalosis due to hepatic overproduction of oxalate. Lumasiran demonstrated efficacy and safety in the 6-month primary analysis period of the phase 3, multinational, open-label, single-arm ILLUMINATE-B study of infants and children < 6 years old with PH1 (ClinicalTrials.gov: NCT03905694 (4/1/2019); EudraCT: 2018–004,014-17 (10/12/2018)). Outcomes in the ILLUMINATE-B extension period (EP) for patients who completed ≥ 12 months on study are reported here. METHODS: Of the 18 patients enrolled in the 6-month primary analysis period, all entered the EP and completed ≥ 6 additional months of lumasiran treatment (median (range) duration of total exposure, 17.8 (12.7–20.5) months). RESULTS: Lumasiran treatment was previously reported to reduce spot urinary oxalate:creatinine ratio by 72% at month 6, which was maintained at 72% at month 12; mean month 12 reductions in prespecified weight subgroups were 89%, 68%, and 71% for patients weighing < 10 kg, 10 to < 20 kg, and ≥ 20 kg, respectively. The mean reduction from baseline in plasma oxalate level was reported to be 32% at month 6, and this improved to 47% at month 12. Additional improvements were also seen in nephrocalcinosis grade, and kidney stone event rates remained low. The most common lumasiran-related adverse events were mild, transient injection-site reactions (3 patients (17%)). CONCLUSIONS: Lumasiran treatment provided sustained reductions in urinary and plasma oxalate through month 12 across all weight subgroups, with an acceptable safety profile, in infants and young children with PH1. GRAPHICAL ABSTRACT: A higher resolution version of the Graphical abstract is available as Supplementary information

    Mutations in KEOPS-Complex Genes Cause Nephrotic Syndrome with Primary Microcephaly

    Get PDF
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms

    Innate Immunity and CKD: Is There a Significant Association?

    No full text
    Chronic kidney disease (CKD) constitutes a worldwide epidemic, affecting approximately 10% of the global population, and imposes significant medical, psychological, and financial burdens on society. Individuals with CKD often face elevated morbidity and mortality rates, mainly due to premature cardiovascular events. Chronic inflammation has been shown to play a significant role in the progression of CKD, as well as in the acceleration of CKD-related complications, including atherosclerosis, cardiovascular disease (CVD), protein–energy wasting, and the aging process. Over the past two decades, a substantial body of evidence has emerged, identifying chronic inflammation as a central element of the uremic phenotype. Chronic inflammation has been shown to play a significant role in the progression of CKD, as well as in the acceleration of CKD-related complications in dialysis patients, including atherosclerosis, CVD, protein–energy wasting, and the aging process. Remarkably, chronic inflammation also impacts patients with CKD who have not yet required renal replacement therapy. While extensive research has been conducted on the involvement of both the adaptive and innate immune systems in the pathogenesis of CKD-related complications, this wealth of data has not yet yielded well-established, effective treatments to counteract this ongoing pathological process. In the following review, we will examine the established components of the innate immune system known to be activated in CKD and provide an overview of the current therapeutic approaches designed to mitigate CKD-related chronic inflammation

    Clinical Heterogeneity and Phenotypic Expansion of NaPi-IIa-Associated Disease

    No full text
    Context: NaPi-IIa, encoded by SLC34A1, is a key phosphate transporter in the mammalian proximal tubule and plays a cardinal role in renal phosphate handling. NaPi-IIa impairment has been linked to various overlapping clinical syndromes, including hypophosphatemic nephrolithiasis with osteoporosis, renal Fanconi syndrome with chronic kidney disease, and, most recently, idiopathic infantile hypercalcemia and nephrocalcinosis

    Lumasiran for Advanced Primary Hyperoxaluria Type 1: Phase 3 ILLUMINATE-C Trial

    No full text
    International audienceRATIONALE & OBJECTIVE: Lumasiran reduces urinary and plasma oxalate (POx) in patients with primary hyperoxaluria type 1 (PH1) and relatively preserved kidney function. ILLUMINATE-C evaluates the efficacy, safety, pharmacokinetics, and pharmacodynamics of lumasiran in patients with PH1 and advanced kidney disease. STUDY DESIGN: Phase 3, open-label, single-arm trial. SETTING & PARTICIPANTS: Multinational study; enrolled patients with PH1 of all ages, eGFR ≤45 mL/min/1.73m(2) (if age ≥12 months) or elevated serum creatinine (if age \textless12 months), and POx ≥20 μmol/L at screening, including patients with or without systemic oxalosis. EXPOSURE: Lumasiran administered subcutaneously; 3 monthly doses followed by monthly or quarterly weight-based dosing. OUTCOME: Primary endpoint: percent change in POx from baseline to Month 6 (Cohort A; not receiving hemodialysis at enrollment) and percent change in predialysis POx from baseline to Month 6 (Cohort B; receiving hemodialysis at enrollment). Pharmacodynamic secondary endpoints: percent change in POx area under the curve between dialysis sessions (Cohort B only); absolute change in POx; percent and absolute change in spot urinary oxalate:creatinine ratio, and 24-hour UOx corrected for body surface area. RESULTS: All patients (N=21; 43% female; 76% white) completed the 6-month primary analysis period. Median age at consent: 8 (range, 0-59) years. For the primary endpoint, least-squares mean reduction in POx in Cohort A (N=6) was 33.3% (95% CI, -15.2%, 81.8%) and in Cohort B (N=15) was 42.4% (95% CI, 34.2%, 50.7%). Improvements were also observed in all pharmacodynamic secondary endpoints. Most adverse events were mild or moderate. No patient discontinued treatment or withdrew from the study. The most commonly reported lumasiran-related adverse events were injection-site reactions, all mild and transient. LIMITATIONS: Single-arm study without placebo control. CONCLUSIONS: Lumasiran resulted in substantial reductions in POx with acceptable safety in patients with PH1 who have advanced kidney disease, supporting its efficacy and safety in this patient population

    Mutations in DHDPSL Are Responsible For Primary Hyperoxaluria Type III

    Get PDF
    Primary hyperoxaluria (PH) is an autosomal-recessive disorder of endogenous oxalate synthesis characterized by accumulation of calcium oxalate primarily in the kidney. Deficiencies of alanine-glyoxylate aminotransferase (AGT) or glyoxylate reductase (GRHPR) are the two known causes of the disease (PH I and II, respectively). To determine the etiology of an as yet uncharacterized type of PH, we selected a cohort of 15 non-PH I/PH II patients from eight unrelated families with calcium oxalate nephrolithiasis for high-density SNP microarray analysis. We determined that mutations in an uncharacterized gene, DHDPSL, on chromosome 10 cause a third type of PH (PH III). To overcome the difficulties in data analysis attributed to a state of compound heterozygosity, we developed a strategy of “heterozygosity mapping”—a search for long heterozygous patterns unique to all patients in a given family and overlapping between families, followed by reconstruction of haplotypes. This approach enabled us to determine an allelic fragment shared by all patients of Ashkenazi Jewish descent and bearing a 3 bp deletion in DHDPSL. Overall, six mutations were detected: four missense mutations, one in-frame deletion, and one splice-site mutation. Our assumption is that DHDPSL is the gene encoding 4-hydroxy-2-oxoglutarate aldolase, catalyzing the final step in the metabolic pathway of hydroxyproline
    corecore