25 research outputs found

    Engineered ferritin for lanthanide binding

    Get PDF
    Ferritin H-homopolymers have been extensively used as nanocarriers for diverse applications in the targeted delivery of drugs and imaging agents, due to their unique ability to bind the transferrin receptor (CD71), highly overexpressed in most tumor cells. In order to incorporate novel fluorescence imaging properties, we have fused a lanthanide binding tag (LBT) to the C-terminal end of mouse H-chain ferritin, HFt. The HFt-LBT possesses one high affinity Terbium binding site per each of the 24 subunits provided by six coordinating aminoacid side chains and a tryptophan residue in its close proximity and is thus endowed with strong FRET sensitization properties. Accordingly, the characteristic Terbium emission band at 544 nm for the HFt-LBT Tb(III) complex was detectable upon excitation of the tag enclosed at two order of magnitude higher intensity with respect to the wtHFt protein. X-ray data at 2.9 Å and cryo-EM at 7 Å resolution demonstrated that HFt-LBT is correctly assembled as a 24-mer both in crystal and in solution. On the basis of the intrinsic Tb(III) binding properties of the wt protein, 32 additional Tb(III) binding sites, located within the natural iron binding sites of the protein, were identified besides the 24 Tb(III) ions coordinated to the LBTs. HFt-LBT Tb(III) was demonstrated to be actively uptaken by selected tumor cell lines by confocal microscopy and FACS analysis of their FITC derivatives, although direct fluorescence from Terbium emission could not be singled out with conventional, 295–375 nm, fluorescence excitation

    Biodistribution PET/CT study of hemoglobin-DFO-89Zr complex in healthy and lung tumor-bearing mice

    Get PDF
    Proteins, as a major component of organisms, are considered the preferred biomaterials for drug delivery vehicles. Hemoglobin (Hb) has been recently rediscovered as a potential drug carrier, but its use for biomedical applications still lacks extensive investigation. To further explore the possibility of utilizing Hb as a potential tumor targeting drug carrier, we examined and compared the biodistribution of Hb in healthy and lung tumor-bearing mice, using for the first time 89Zr labelled Hb in a positron emission tomography (PET) measurement. Hb displays a very high conjugation yield in its fast and selective reaction with the maleimide-deferoxamine (DFO) bifunctional chelator. The high-resolution X-ray structure of the Hb-DFO complex demonstrated that cysteine β93 is the sole attachment moiety to the αβ-protomer of Hb. The Hb-DFO complex shows quantitative uptake of 89Zr in solution as determined by radiochromatography. Injection of 0.03 mg of Hb-DFO-89Zr complex in healthy mice indicates very high radioactivity in liver, followed by spleen and lungs, whereas a threefold increased dosage results in intensification of PET signal in kidneys and decreased signal in liver and spleen. No difference in biodistribution pattern is observed between naïve and tumor-bearing mice. Interestingly, the liver Hb uptake did not decrease upon clodronate-mediated macrophage depletion, indicating that other immune cells contribute to Hb clearance. This finding is of particular interest for rapidly developing clinical immunology and projects aiming to target, label or specifically deliver agents to immune cells

    Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation

    Get PDF
    Background Myeloid-derived suppressor cells (MDSC) are a functional myeloid cell subset that includes myeloid cells with immune suppressive properties. The presence of MDSC has been reported in the peripheral blood of patients with several malignant and non-malignant diseases. So far, direct comparison of MDSC across different diseases and Centers is hindered by technical pitfalls and a lack of standardized methodology. To overcome this issue, we formed a network through the COST Action Mye-EUNITER (www.mye-euniter.eu) with the goal to standardize and facilitate the comparative analysis of human circulating MDSC in cancer, inflammation and infection. In this manuscript, we present the results of the multicenter study Mye-EUNITER MDSC Monitoring Initiative, that involved 13 laboratories and compared circulating MDSC subsets across multiple diseases, using a common protocol for the isolation, identification and characterization of these cells. Methods We developed, tested, executed and optimized a standard operating procedure for the isolation and immunophenotyping of MDSC using blood from healthy donors. We applied this procedure to the blood of almost 400 patients and controls with different solid tumors and non-malignant diseases. The latter included viral infections such as HIV and hepatitis B virus, but also psoriasis and cardiovascular disorders. Results We observed that the frequency of MDSC in healthy donors varied substantially between centers and was influenced by technical aspects such as the anticoagulant and separation method used. Expansion of polymorphonuclear (PMN)-MDSC exceeded the expansion of monocytic MDSC (M-MDSC) in five out of six solid tumors. PMN-MDSC expansion was more pronounced in cancer compared with infection and inflammation. Programmed death-ligand 1 was primarily expressed in M-MDSC and e-MDSC and was not upregulated as a consequence of disease. LOX-1 expression was confined to PMN-MDSC. Conclusions This study provides improved technical protocols and workflows for the multi-center analysis of circulating human MDSC subsets. Application of these workflows revealed a predominant expansion of PMN-MDSC in solid tumors that exceeds expansion in chronic infection and inflammation

    Deciphering the Dual Role of <i>Heligmosomoides polygyrus</i> Antigens in Macrophage Modulation and Breast Cancer Cell Growth

    No full text
    In our study, we explored how parasitic nematodes, specifically Heligmosomoides polygyrus, influence the immune response, focusing on their potential role in tumor growth. The study aimed to understand the mechanisms by which these parasites modify immune cell activation, particularly in macrophages, and how this might create an environment conducive to tumor growth. Our methods involved analyzing the effects of H. polygyrus excretory-secretory antigens on macrophage activation and their subsequent impact on breast cancer cell lines EMT6 and 4T1. We observed that these antigens significantly increased the expression of genes associated with both pro-inflammatory and anti-inflammatory molecules, such as inducible nitric oxide synthase, TNF-α, (Tumor Necrosis Factor) Il-6 (Interleukin), and arginase. Additionally, we observed changes in the expression of macrophage surface receptors like CD11b, F4/80, and TLR4 (Toll-like receptor 4). Our findings indicate that the antigens from H. polygyrus markedly alter macrophage behavior and increase the proliferation of breast cancer cells in a laboratory setting. This study contributes to a deeper understanding of the complex interactions between parasitic infections and cancer development, highlighting the need for further research in this area to develop potential new strategies for cancer treatment

    MDSCs Mediate Angiogenesis and Predispose Canine Mammary Tumor Cells for Metastasis via IL-28/IL-28RA (IFN-λ) Signaling

    No full text
    <div><p>Background</p><p>Myeloid-derived suppressor cells (MDSCs) function in immunosuppression and tumor development by induction of angiogenesis in a STAT3-dependent manner. Knowledge of MDSC biology is mainly limited to mice studies, and more clinical investigations using spontaneous tumor models are required. Here we performed <i>in vitro</i> experiments and clinical data analysis obtained from canine patients.</p><p>Methods</p><p>Using microarrays we examined changes in gene expression in canine mammary cancer cells due to their co-culture with MDSCs. Further, using Real-time rt-PCR, Western blot, IHC, siRNA, angiogenesis assay and migration/invasion tests we examined a role of the most important signaling pathway.</p><p>Results</p><p>In dogs with mammary cancer, the number of circulating MDSCs increases with tumor clinical stage. Microarray analysis revealed that MDSCs had significantly altered molecular pathways in tumor cells <i>in vitro</i>. Particularly important was the detected increased activation of IL-28/IL-28RA (IFN-λ) signaling. The highest expression of IL-28 was observed in stage III/IV mammary tumor-bearing dogs. IL-28 secreted by MDSCs stimulates STAT3 in tumor cells, which results in increased expression of angiogenic factors and subsequent induction of angiogenesis by endothelial cells, epithelial-mesenchymal transition (EMT) and increased migration of tumor cells <i>in vitro</i>. Knockdown of IL-28RA decreased angiogenesis, tumor cell invasion and migration.</p><p>Conclusions</p><p>We showed for the first time that MDSCs secrete IL-28 (IFN-λ), which promotes angiogenesis, EMT, invasion and migration of tumor cells. Thus, IL-28 may constitute an interesting target for further therapies. Moreover, the similarity in circulating MDSC levels at various tumor clinical stages between canine and human patients indicates canines as a good model for clinical trials of drugs targeting MDSCs.</p></div

    Growth characteristics on Matrigel matrix.

    No full text
    <p>Phase contrast micrographs of CMT-U27, CMT-U309, and P114 cells grown on the Matrigel matrix under control conditions or treated with <i>il-28ra</i> siRNA either IL-28. Control and siRNA-treated neoplastic cells formed colonies, whereas those treated with IL-28 changed their shape for spindle-like, invaded the Matrigel matrix and formed branches.</p

    Changes in cytokeratin and vimentin expression.

    No full text
    <p>Representative pictures showing changes in expression of cytokeratin (upper panel) and vimentin (bottom panel) in P114 canine mammary control cells (mock-transfected), cells treated with <i>Il-28ra</i>-specific siRNA and cells treated with IL-28. Values that differed significantly are marked as * (<i>P</i><0.05) or *** (<i>P</i><0.001).</p

    Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages.

    No full text
    Established cell lines are widely used in research, however an appealing question is the comparability of the cells between various laboratories, their characteristics and stability in time. Problematic is also the cell line misidentification, genetic and phenotypic shift or Mycoplasma contamination which are often forgotten in research papers. The monocyte/macrophage-like cell line RAW 264.7 has been one of the most commonly used myeloid cell line for more than 40 years. Despite its phenotypic and functional stability is often discussed in literature or at various scientific discussion panels, their stability during the consecutive passages has not been confirmed in any solid study. So far, only a few functional features of these cells have been studied, for example their ability to differentiate into osteoclasts. Therefore, in the present paper we have investigated the phenotype and functional stability of the RAW 264.7 cell line from passage no. 5 till passage no. 50. We found out that the phenotype (expression of particular macrophage-characteristic genes and surface markers) and functional characteristics (phagocytosis and NO production) of RAW 264.7 cell line remains stable through passages: from passage no. 10 up to passage no. 30. Overall, our results indicated that the RAW 264.7 cell line should not be used after the passage no. 30 otherwise it may influence the data reliability
    corecore