10 research outputs found

    Is callose a barrier for lead ions entering Lemna minor L. root cells?

    Get PDF
    Plants have developed a range of strategies for resisting environmental stresses. One of the most common is the synthesis and deposition of callose, which functions as a barrier against stress factor penetration. The aim of our study was to examine whether callose forms an efficient barrier against Pb penetration in the roots of Lemna minor L. exposed to this metal. The obtained results showed that Pb induced callose synthesis in L. minor roots, but it was not deposited regularly in all tissues and cells. Callose occurred mainly in the protoderm and in the centre of the root tip (procambial central cylinder). Moreover, continuous callose bands, which could form an efficient barrier for Pb penetration, were formed only in the newly formed and anticlinal cell walls (CWs); while in other CWs, callose formed only small clusters or incomplete bands. Such an arrangement of callose within root CWs inefficiently protected the protoplast from Pb penetration. As a result, Pb was commonly present inside the root cells. In the light of the results, the barrier role of callose against metal ion penetration appears to be less obvious than previously believed. It was indicated that induction of callose synthesis is not enough for a successful blockade of the stress factor penetration. Furthermore, it would appear that the pattern of callose distribution has an important role in this defence strategy

    The effect of pre-incubation of Allium cepa L. roots in the ATH-rich extract on Pb uptake and localization

    Get PDF
    The positive influence of anthocyanin (ATH) on toxic metal-treated plant material is well documented; however, it is still not explained if it is caused by changes in element absorption and distribution. Therefore, detailed analysis of the effect of the ATH-rich extract from red cabbage leaves on Pb uptake and localization at morphological, anatomical and ultrastructural level was the goal of this study. Two-day-old adventitious roots of Allium cepa L. (cv. Polanowska) were treated for 2 h with the aqueous solution of Pb(NO3)2 at the concentration of 100 μM with or without preliminary incubation in the anthocyanin-rich extract from Brassica oleracea L. var. capitata rubra leaves (250 μM, 3 h). The red cabbage extract did not change the total Pb uptake but it enhanced the translocation of accumulated metal from roots to shoots. Within the pretreated roots, more Pb was deposited in their basal part and definitely smaller amount of the metal was bound in the apoplast of the outer layers of cortex cells. The ultrastructural analysis (transmission electron microscopy and X-ray microanalysis) revealed that the ATH-rich extract lowered the number of Pb deposits in intracellular spaces, cell wall and cytoplasm of root meristematic cells as well as in such organelles important to cell metabolism as mitochondria, plastids and nucleus. The Pb deposits were preferably localised in those vacuoles where ATH also occurred. This sequestration of Pb in vacuoles is probably responsible for reduction of metal cytotoxicity and consequently could lead to better plant growth.This work was supported by the grant of the University of Lodz, no. 505/04038

    New facts concerning the vesicular transport in plant cells

    No full text
    Komórki eukariotyczne charakteryzują się między innymi systemem błon wewnętrznych. Pomiędzy organellami systemu wykształciła się pewnego rodzaju komunikacja, głównie za pomocą transportu pęcherzykowego, zapewniająca sprawne funkcjonowanie komórek a także całego organizmu. Organelle wchodzące w skład systemu błon wewnętrznych biorą udział w licznych procesach, przede wszystkim w transporcie różnych substancji, m.in. białek, szlakiem sekrecyjnym i endocytotycznym. Błony i białka są przenoszone między organellami, za pomocą struktur zwanych pęcherzykami transportującymi, a proces ten jest znany jako transport pęcherzykowy. Ze względu na kompleksowość zagadnienia, artykuł skupia się tylko na szlaku wydzielniczym. Obejmuje on wczesny szlak sekrecyjny, który biegnie od retikulum endoplazmatycznego (ER) do strefy cis diktiosomu (D), transport przez diktiosom i późny szlak sekecyjny obejmujący eksport białek z diktiosomu. Bardziej szczegółowo są przedstawione najnowsze osiągnięcia dotyczące transportu od ER do strefy cis diktiosomu, a także transportu wstecznego z udziałem retromeru.Eukaryotic cells are characterized, among other traits, by a system of internal membranes. Between the organelles of the system there developed a kind of communication, ensuring the smooth functioning of the cells and of the whole organism. The organelles "communicate" among themselves, mainly due to vesicular transport They are involved in numerous processes, mainly in the secretory pathway and endocytosis. Membranes and proteins are moved between organelles of the system through small structures called transporting vesicles and this process is known as vesicular transport. Due to the comprehensiveness of the issue, the article focuses only on the secretory pathway. This pathway embraces the early secretory pathway, which runs from the endoplasmic reticulum (ER) to the cis- zone of the diktiosom (D), transport by D and the late secretory pathway, including the export of proteins from D. In a greater detail are presented the latest developments on the issues related primarily to the transport from the ER to the cis-zone, and retrograde transport involving the retromer

    Bacteria and micorrhizal fungi enhance plants' efficiency in trace metal phytoremediation of trace metals contaminated areas

    No full text
    Zanieczyszczenie środowiska przez metale śladowe jest nadal szeroko rozpowszechnionym i poważnym problemem. Wymusza to powstanie nowych strategii jego oczyszczania. Jedną z bardzo obiecujących, stosunkowo tanich i przyjaznych środowisku technologii jest fitoremediacja. Wykorzystuje ona trzy grupy roślin: hiperakumulatory, rośliny uprawne i drzewiaste. Pomimo wielu zalet, którymi cechują się te grupy roślin istnieją także liczne ograniczenia, w ich komercyjnym zastosowaniu. Do zwiększania potencjału fitoremediacyjnego roślin, stosuje się obecnie ich modyfikacje, zarówno genetyczne, jak i niegenetyczne. Wśród niegenetycznych wyróżnia się: inokulację (sztuczne zakażanie) ryzobakteriami/bakteriami stymulującymi wzrost strefy korzeniowej (ang., odpowiednio, PGPR/ PGPB), na przykład bakteriami produkującymi siderofory (ang. SPB). Wykorzystuje się do tego celu również endofity czy grzyby mikoryzowe. W efekcie obserwuje się na przykład: (1) lepsze odżywianie mineralne roślin, (2) modyfikacje morfologii oraz topografii korzeni, co przekłada się na zwiększenie ich powierzchni absorpcyjnej, (3) wzrost odporności na patogeny, (4) wzrost akumulacji i tolerancji na metale śladowe. Pozwala to zmodyfikowanym roślinom, przeżyć na terenach bardzo skażonych mimo kumulowania stosunkowo dużej ilości metali śladowych. Nie zmniejsza s się też znacząco ich biomasa. Dzięki takim zabiegom można więc uzyskać u roślin kluczowe cechy decydujące o sukcesie fitoremediacji. Przykłady modyfikacji niegenetycznych przedstawione w tym opracowaniu są przyjazne środowisku. Biorąc pod uwagę wyniki uzyskane poprzez modyfikacje niegenetyczne roślin obecny kierunek w fitoremediacji terenów skażonych metalami śladowymi wydaje się obiecujący.The environmental pollution caused by trace metals is still a widespread and serious problem. Numerous methods of metal clean-up strategies were developed. The phytoremediation, is considered as a very promising, environmentally friendly and relatively cheap technology. Three main groups of plants are used for this technology: hyperaccumulators, crop plants and tree species. However, no one group of plants is enough efficient for this technology what limits their commercial application. In order to increase plant phytoremediation potential, genetic and non-genetic modifications are carried out. In this review we focused on non-genetic ones. Plant non-genetic modifications include: inoculation (an artificial infection) by Plant Growth Promoting Rhizobacteria (PGPR)/Plant Growth Promoting Bacteria (PGPB), for instance Siderophore Producing Bacteria (SPB) and by endophytes or micorrhizal fungi. In brief, all used modifications resulted in: (1) improvement of mineral nutrition of the plant, (2) better root's morphology and topography what increased the surface of mineral and trace metals absorption, (3) increase the plant resistance for pathogens and (4) increase its accumulation and tolerance of trace metals. It lets the modified plants, survive on high contaminated areas, do not markedly decrease the biomass together with relatively high accumulation of trace metals in their tissues. Consequently they obtained all key features for successful phytoremediation. It is worth noting moreover, that non-genetic plant modifications depicted in this review are environmentally friendly. Taking into account the facts this direction of plant modifications for phytoremediation of trace metals contaminated areas seems to be promising
    corecore