8 research outputs found

    Loss of MicroRNA Targets in the 3′ Untranslated Region as a Mechanism of Retroviral Insertional Activation of Growth Factor Independence 1▿

    No full text
    The non-oncogene-bearing retrovirus SL3-3 murine leukemia virus induces strictly T-cell lymphomas with a mean latency of 2 to 4 months in mice of the NMRI-inbred (NMRI-i) strain. By high-throughput sequencing of retroviral tags, we have identified the genomic region carrying the transcriptional repressor and oncogene growth factor independence 1 (Gfi1) as a frequent target for SL3-3 in the NMRI-i mouse genome. Twenty-four SL3-3 insertions were identified within a 1-kb window of the 3′ untranslated region (3′UTR) of the Gfi1 gene, a clustering pattern unique for this lymphoma model. Expression analysis determined that the Gfi1 gene was transcriptionally activated by SL3-3 insertions, and an upregulation of Gfi1 protein expression was detected for tumors harboring insertions in the Gfi1 3′UTR. Here we provide data in support of a mechanism by which retroviral insertions in the Gfi1 3′UTR decouple microRNA-mediated posttranscriptional regulation

    Gene expression profiling of murine T-cell lymphoblastic lymphoma identifies deregulation of S-phase initiating genes

    No full text
    In a search for genes and pathways implicated in T-cell lymphoblastic lymphoma (T-LBL) development, we used a murine lymphoma model, where mice of the NMRI-inbred strain were inoculated with murine leukemia virus mutants. The resulting tumors were analyzed by integration analysis and global gene expression profiling to determine the effect of the retroviral integrations on the nearby genes, and the deregulated pathways in the tumors. Gene expression profiling identified increased expression of genes involved in the minichromosome maintenance and origin of recognition pathway as well as downregulation in negative regulators of G1/S transition, indicating increased S-phase initiation in murine T-LBLs

    MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma

    No full text
    Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[1]) ALCLs, 25 ALK-negative (ALK[2]) ALCLs, 9 angioimmunoblastic T-cell lymphomas, 11 peripheral T-cell lymphomas not otherwise specified (PTCLNOS), and normal T cells, and demonstrated that ALCLs express many of the miRNAs that are highly expressed in normal T cells with the prominent exception of miR-146a. Unsupervised hierarchical clustering demonstrated distinct clustering of ALCL, PTCL-NOS, and the AITL subtype of PTCL. Cases of ALK(1) ALCL and ALK(-) ALCL were interspersed in unsupervised analysis, suggesting a close relationship at the molecular level. We identified an miRNA signature of 7 miRNAs (5 upregulated: miR-512-3p, miR-886-5p, miR-886-3p, miR-708, miR-135b; 2 downregulated: miR-146a, miR-155) significantly associated with ALK(1) ALCL cases. In addition, we derived an 11-miRNA signature (4 upregulated: miR-210, miR-197, miR-191, miR-512-3p; 7 downregulated: miR-451, miR-146a, miR-22, miR-455-3p, miR-455-5p, miR-143, miR-494) that differentiates ALK(-) ALCL from other PTCLs. Our in vitro studies identified a set of 32 miRNAs associated with ALK expression. Of these, themiR-17 similar to 92 cluster and its paralogues were also highly expressed in ALK(1) ALCL and may represent important downstream effectors of the ALK oncogenic pathway.HematologySCI(E)18ARTICLE122083-209212

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p
    corecore