51 research outputs found

    Electron states of mono- and bilayer graphene on SiC probed by STM

    Full text link
    We present a scanning tunneling microscopy (STM) study of a gently-graphitized 6H-SiC(0001) surface in ultra high vacuum. From an analysis of atomic scale images, we identify two different kinds of terraces, which we unambiguously attribute to mono- and bilayer graphene capping a C-rich interface. At low temperature, both terraces show (3×3)(\sqrt{3}\times \sqrt{3}) quantum interferences generated by static impurities. Such interferences are a fingerprint of π\pi-like states close to the Fermi level. We conclude that the metallic states of the first graphene layer are almost unperturbed by the underlying interface, in agreement with recent photoemission experiments (A. Bostwick et al., Nature Physics 3, 36 (2007))Comment: 4 pages, 3 figures submitte

    Sentinel Lymph-Node Biopsy in Early-Stage Cervical Cancer: The 4-Year Follow-Up Results of the Senticol 2 Trial.

    Get PDF
    Senticol 2 is a randomized multicenter trial in the treatment of early-stage cervical cancer patients. The aim of the Senticol 2 study was to compare the effect of sentinel-lymph-node biopsy (SLNB) to that of SLNB + pelvic lymphadenectomy (PLND), and to determine the postoperative lymphatic morbidity in the two groups. Here, we report a secondary objective of this study: the follow up. In the Senticol 2 trial, patients underwent a laparoscopy with a sentinel-node-detection procedure and were randomized into two groups, namely: Group A, in which participants received SLNB, and Group B, in which participants received SLNB + PLND. Patients with an intra-operative macroscopically suspicious lymph node, were given a frozen-section evaluation and were randomized only if the results were negative. All of the patients received follow up with a clinical examination at 1, 3, and 6 months after surgery, and then every 3-4 months after that. The median follow up was 51 months (4 years and 3 months). Disease-free survival after 4 years for the SLNB group and the SLNB + PLND group were 89.51% and 93.1% (p = 0.53), respectively. The only statistical factor associated with recurrence in the univariate analysis was the adjuvant radiotherapy. No other factors, including the age of the patients, histological type, tumor size, lymph vascular space invasion (LVSI), and positive nodal status, were significant in the univariate or multivariate analyses. The overall survival rates after 4 years in the SLNB and SLNB + PLND groups were 95.2% and 96% (p = 0.97), with five and four deaths, respectively. The univariate and multivariate analyses did not find any prognostic factors. This randomized study confirmed the results of the Senticol 1 study and supports the sentinel lymph node (SLN) technique as a safe technique for use in patients with early-stage cervical cancer treated with SLNB only. Disease-free survival after 4 years was similar in patients treated with SLN biopsy and patients who underwent a lymphadenectomy

    Sentinel lymph node biopsy and morbidity outcomes in early cervical cancer: Results of a multicentre randomised trial (SENTICOL-2).

    Get PDF
    Pelvic lymph node dissection has been the standard of care for patients with early cervical cancer. Sentinel node (SN) mapping is safe and feasible and may increase the detection of metastatic disease, but benefits of omitting pelvic lymph node dissection in terms of decreased morbidity have not been demonstrated. In an open-label study, patients with early cervical carcinoma (FIGO 2009 stage IA2 to IIA1) were randomly assigned to SN resection alone (SN arm) or SN and pelvic lymph node dissection (SN + PLND arm). SN resection was followed by radical surgery of the tumour (radical hysterectomy or radical trachelectomy). The primary end-point was morbidity related to the lymph node dissection; 3-year recurrence-free survival was a secondary end-point. A total of 206 patients were eligible and randomly assigned to the SN arm (105 patients) or SN + PLND arm (101 patients). Most patients had stage IB1 lesion (87.4%). No false-negative case was observed in SN + PLND arm. Lymphatic morbidity was significantly lower in the SN arm (31.4%) than in the SN + PLND arm (51.5%; p = 0.0046), as was the rate of postoperative neurological symptoms (7.8% vs. 20.6%, p = 0.01, respectively). However, there was no significant difference in the proportion of patients with significant lymphoedema between the two groups. During the 6-month postoperative period, the difference in morbidity decreased over time. The 3-year recurrence-free survival was not significantly different (92.0% in SN arm and 94.4% in SN + PLND arm). SN resection alone is associated with early decreased lymphatic morbidity when compared with SN + PLND in early cervical cancer

    Weakly Trapped, Charged, and Free Excitons in Single-Layer MoS2 in the Presence of Defects, Strain, and Charged Impurities

    Get PDF
    Few- and single-layer MoS2 host substantial densities of defects. They are thought to influence the doping level, the crystal structure, and the binding of electron-hole pairs. We disentangle the concomitant spectroscopic expression of all three effects and identify to what extent they are intrinsic to the material or extrinsic to it, i.e., related to its local environment. We do so by using different sources of MoS2 - a natural one and one prepared at high pressure and high temperature - and different substrates bringing varying amounts of charged impurities and by separating the contributions of internal strain and doping in Raman spectra. Photoluminescence unveils various optically active excitonic complexes. We discover a defect-bound state having a low binding energy of 20 meV that does not appear sensitive to strain and doping, unlike charged excitons. Conversely, the defect does not significantly dope or strain MoS2. Scanning tunneling microscopy and density functional theory simulations point to substitutional atoms, presumably individual nitrogen atoms at the sulfur site. Our work shows the way to a systematic understanding of the effect of external and internal fields on the optical properties of two-dimensional materials

    Electronic structure and the minimum conductance of a graphene layer on SiO2 from density-functional methods.

    Full text link
    The effect of the SiO2_2 substrate on a graphene film is investigated using realistic but computationally convenient energy-optimized models of the substrate supporting a layer of graphene. The electronic bands are calculated using density-functional methods for several model substrates. This provides an estimate of the substrate-charge effects on the behaviour of the bands near EFE_F, as well as a variation of the equilibrium distance of the graphene sheet. A model of a wavy graphene layer is examined as a possible candidate for understanding the nature of the minimally conducting states in graphene.Comment: 6 pages, 5 figure

    Perioperative morbidity of radical trachelectomy with lymphadenectomy in early-stage cervical cancer: a French prospective multicentric cohort.

    Get PDF
    The aim of this study was to determine the predictive factors of postoperative morbidity of patients who have undergone a radical trachelectomy (RT) for early-stage cervical cancer and to assess the oncologic outcomes. We retrospectively analysed the data of 2 prospective trials on sentinel node biopsy for cervical cancer (SENTICOL I and II). Patients having a RT for early-stage cervical cancer with negative sentinel lymph node and safe margins, were included. Forty-nine patients met the inclusion criteria. Forty-five patients had a laparoscopic-assisted vaginal technique and 4 patients a total laparoscopic technique. The median age was 32 years (range, 22-46 years). 83.7% of patients had a stage IB1 disease. There were 63.3% squamous cell carcinomas and 34.7% adenocarcinomas. The median follow-up was 46 months (range, 1-85 months). Two patients (3.3%) had a severe postoperative complication (Clavien-Dindo ≥III and/or CTCAE ≥3). The main postoperative complications were urinary (28.6%), lymphovascular (26.5%) and neurologic (14.3%). On a multivariate analysis, postoperative complications were significantly associated with history of pelvic surgery and IB1 International Federation of Gynecology and Obstetrics stage. Inclusion in high surgical skills centers decrease the risk of postoperative complications. During the follow-up, 3 patients (6.1%) had a local recurrence and one patient died from a breast cancer. Between group with complications and group without any complications, overall survival and recurrence-free survival did not significantly differ at 5-year of follow-up. RT has few severe postoperative complications and appears as a safe alternative to spare fertility of young patients. To guarantee best surgical outcomes, patients should be referred to expert center

    Symmetry Breaking in Few Layer Graphene Films

    Get PDF
    Recently, it was demonstrated that the quasiparticle dynamics, the layer-dependent charge and potential, and the c-axis screening coefficient could be extracted from measurements of the spectral function of few layer graphene films grown epitaxially on SiC using angle-resolved photoemission spectroscopy (ARPES). In this article we review these findings, and present detailed methodology for extracting such parameters from ARPES. We also present detailed arguments against the possibility of an energy gap at the Dirac crossing ED.Comment: 23 pages, 13 figures, Conference Proceedings of DPG Meeting Mar 2007 Regensburg Submitted to New Journal of Physic

    Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset

    Get PDF
    Recent research efforts have progressively shifted towards preventative psychiatry and prognostic identification of individuals before disease onset. We describe the development of a serum biomarker test for the identification of individuals at risk of developing schizophrenia based on multiplex immunoassay profiling analysis of 957 serum samples. First, we conducted a meta-analysis of five independent cohorts of 127 first-onset drug-naive schizophrenia patients and 204 controls. Using least absolute shrinkage and selection operator regression, we identified an optimal panel of 26 biomarkers that best discriminated patients and controls. Next, we successfully validated this biomarker panel using two independent validation cohorts of 93 patients and 88 controls, which yielded an area under the curve (AUC) of 0.97 (0.95-1.00) for schizophrenia detection. Finally, we tested its predictive performance for identifying patients before onset of psychosis using two cohorts of 445 pre-onset or at-risk individuals. The predictive performance achieved by the panel was excellent for identifying USA military personnel (AUC: 0.90 (0.86-0.95)) and help-seeking prodromal individuals (AUC: 0.82 (0.71-0.93)) who developed schizophrenia up to 2 years after baseline sampling. The performance increased further using the latter cohort following the incorporation of CAARMS (Comprehensive Assessment of At-Risk Mental State) positive subscale symptom scores into the model (AUC: 0.90 (0.82-0.98)). The current findings may represent the first successful step towards a test that could address the clinical need for early intervention in psychiatry. Further developments of a combined molecular/symptom-based test will aid clinicians in the identification of vulnerable patients early in the disease process, allowing more effective therapeutic intervention before overt disease onset

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described
    corecore