5 research outputs found

    Functional Variant in Complement C3 Gene Promoter and Genetic Susceptibility to Temporal Lobe Epilepsy and Febrile Seizures

    Get PDF
    BACKGROUND: Human mesial temporal lobe epilepsies (MTLE) represent the most frequent form of partial epilepsies and are frequently preceded by febrile seizures (FS) in infancy and early childhood. Genetic associations of several complement genes including its central component C3 with disorders of the central nervous system, and the existence of C3 dysregulation in the epilepsies and in the MTLE particularly, make it the C3 gene a good candidate for human MTLE. METHODOLOGY/PRINCIPAL FINDINGS: A case-control association study of the C3 gene was performed in a first series of 122 patients with MTLE and 196 controls. Four haplotypes (HAP1 to 4) comprising GF100472, a newly discovered dinucleotide repeat polymorphism [(CA)8 to (CA)15] in the C3 promoter region showed significant association after Bonferroni correction, in the subgroup of MTLE patients having a personal history of FS (MTLE-FS+). Replication analysis in independent patients and controls confirmed that the rare HAP4 haplotype comprising the minimal length allele of GF100472 [(CA)8], protected against MTLE-FS+. A fifth haplotype (HAP5) with medium-size (CA)11 allele of GF100472 displayed four times higher frequency in controls than in the first cohort of MTLE-FS+ and showed a protective effect against FS through a high statistical significance in an independent population of 97 pure FS. Consistently, (CA)11 allele by its own protected against pure FS in a second group of 148 FS patients. Reporter gene assays showed that GF100472 significantly influenced C3 promoter activity (the higher the number of repeats, the lower the transcriptional activity). Taken together, the consistent genetic data and the functional analysis presented here indicate that a newly-identified and functional polymorphism in the promoter of the complement C3 gene might participate in the genetic susceptibility to human MTLE with a history of FS, and to pure FS. CONCLUSIONS/SIGNIFICANCE: The present study provides important data suggesting for the first time the involvement of the complement system in the genetic susceptibility to epileptic seizures and to epilepsy

    Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex

    No full text
    It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), whereas mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator receptor (uPAR). Independent chromatin-immunoprecipitation microarray screening has identified the uPAR gene promoter as a potential target site bound by FOXP2. Here, we directly tested for the existence of a transcriptional regulatory network between human FOXP2 and the SRPX2/uPAR complex. In silico searches followed by gel retardation assays identified specific efficient FOXP2-binding sites in each of the promoter regions of SRPX2 and uPAR. In FOXP2-transfected cells, significant decreases were observed in the amounts of both SRPX2 (43.6%) and uPAR (38.6%) native transcripts. Luciferase reporter assays demonstrated that FOXP2 expression yielded a marked inhibition of SRPX2 (80.2%) and uPAR (77.5%) promoter activity. A mutant FOXP2 that causes DVD (p.R553H) failed to bind to SRPX2 and uPAR target sites and showed impaired down-regulation of SRPX2 and uPAR promoter activity. In a patient with polymicrogyria of the left rolandic operculum, a novel FOXP2 mutation (p.M406T) was found in the leucine-zipper (dimerization) domain. p.M406T partially impaired the FOXP2 regulation of SRPX2 promoter activity, whereas that of the uPAR promoter remained unchanged. Together with recently described FOXP2-CNTNAP2 and SRPX2/uPAR links, the FOXP2-SRPX2/uPAR network provides exciting insights into molecular pathways underlying speech-related disorders
    corecore