119 research outputs found

    Theoretical evaluation of MTF and charge collection efficiency in CCD and CMOS image sensor

    Get PDF
    Classical models used to calculate the Modulation Transfer function (MTF) of a solid-state image sensor generally use a sinusoidal type of illumination. The approach, described in this paper, consists in considering a point-source illumination to built a theoretical three dimensional model of the diffusion and the collection of photo-carriers created within the image sensor array. Fourier transform formalism is used for this type of illumination. Solutions allow to evaluate the spatial repartition of the charge density collected in the space charge region, i.e. to get the Pixel Response Function (PRF) formulation. PRF enables to calculate analytically both MTF and crosstalk at every needed wavelengths. The model can take into account a uniformly doped substrate and an epitaxial layer grown on a highly doped substrate. The built-in electric field induced by the EPI/Substrate doping gradient is also taken into account. For these configurations, MTF, charge collection efficiency and crosstalk proportion are calculated. The study is established in the case of photodiode pixel but it can be easily extended to pinned photodiode pixels and photogate pixels

    Nitrogen isotopic evolution of carbonaceous matter during metamorphism: Methodology and preliminary results

    Get PDF
    Nitrogen content and isotopic composition of carbonaceous-rich metasediments were determined by on-line and sealed-tube combustion using ultra-high vacuum line and static mass spectrometer adapted to analyse nitrogen nanomoles. Accurate measurements showed that nitrogen amount released by on-line combustion technique was underestimated to various extents. As a result, the nitrogen isotopic composition was not correctly determined. In contrast, sealed-tube combustion appeared to yield the most reproducible and accurate measurements, except for nitrogen depleted carbonaceous matter (semi-graphite to graphite transition) containing less than around 60 ppm of nitrogen, which were contaminated during their extraction from the rock. In view of that, a preliminary sealed-tube investigation of the organic nitrogen content and isotopic composition in a homogenous series of low-grade metasediments was undertaken: in spite of an important nitrogen loss, the carbonaceous matter nitrogen isotopic composition remains about the same during the meta-anthracite and semi-graphitisation stages. Inferences on the process of organic nitrogen mineralization during carbonaceous matter metamorphism can be drawn and several paleo-biogeochemical implications envisaged

    Chickadees Faced with Unpredictable Food Increase Fat Reserves but Certain Components of Their Immune Function Decline

    Get PDF
    In winter, temperate resident birds are often faced with periodic low natural food availability. This reduction or unpredictability in resource availability might then have a negative impact on immune function, given that immune system support is highly resource dependent. We investigated the balance between energetic and immune management in captive black-capped chickadees (Poecile atricapilus) by manipulating the predictability of resources. The control group received food ad lib. every day, while the experimental group received a reduced amount of food on random days and food ad lib. on all other days. We measured two key metrics of energetic management (body and fat mass) as well as a suite of immune system components. Compared with control birds, experimental birds maintained significantly higher total body and fat mass, had lower acute phase protein concentrations, and had decreased body temperature and lost more body mass during the fever response following injection with lipopolysaccharides. Interestingly, birds in both groups had similar levels of complement lysis, delayed-type hypersensitivity response (phytohemagglutinin), and primary antibody production (keyhole limpet hemocyanin). This experiment demonstrates that black-capped chickadees strategically increase their fat mass in response to decreased food availability and that this might allow the birds to maintain most of the immune system unaltered, except some of the most costly immune components

    Limited Access to Food and Physiological Trade-Offs in a Long-Distance Migrant Shorebird. II. Constitutive Immune Function and the Acute-Phase Response

    Get PDF
    In response to unbalanced energy budgets, animals must allocate resources among competing physiological systems to maximize fitness. Constraints can be imposed on energy availability or energy expenditure, and adjustments can be made via changes in metabolism or trade-offs with competing demands such as body-mass maintenance and immune function. This study investigates changes in constitutive immune function and the acute-phase response in shorebirds (red knots) faced with limited access time to food. We separated birds into two experimental groups receiving either 6 h or 22 h of food access and measured constitutive immune function. After 3 wk, we induced an acute-phase response, and after 1 wk of recovery, we switched the groups to the opposite food treatment and measured constitutive immune function again. We found little effect of food treatment on constitutive immune function, which suggests that even under resource limitation, a baseline level of immune function is maintained. However, birds enduring limited access to food suppressed aspects of the acute-phase response (decreased feeding and mass loss) to maintain energy intake, and they downregulated thermoregulatory adjustments to food treatment to maintain body temperature during simulated infection. Thus, under resource-limited conditions, birds save energy on the most costly aspects of immune defense.</p

    Chickadees faced with unpredictable food increase fat reserves but certain components of their immune function decline

    Get PDF
    In winter, temperate resident birds are often faced with periodic low natural food availability. This reduction or unpredictability in resource availability might then have a negative impact on immune function, given that immune system support is highly resource dependent. We investigated the balance between energetic and immune management in captive black-capped chickadees (Poecile atricapilus) by manipulating the predictability of resources. The control group received food ad lib. every day, while the experimental group received a reduced amount of food on random days and food ad lib. on all other days. We measured two key metrics of energetic management (body and fat mass) as well as a suite of immune system components. Compared with control birds, experimental birds maintained significantly higher total body and fat mass, had lower acute phase protein concentrations, and had decreased body temperature and lost more body mass during the fever response following injection with lipopolysaccharides. Interestingly, birds in both groups had similar levels of complement lysis, delayed-type hypersensitivity response (phytohemagglutinin), and primary antibody production (keyhole limpet hemocyanin). This experiment demonstrates that black-capped chickadees strategically increase their fat mass in response to decreased food availability and that this might allow the birds to maintain most of the immune system unaltered, except some of the most costly immune components

    Experimental simulation of H2 coinjection via a high-pressure reactor with natural gas in a low-salinity deep aquifer used for current underground gas storage

    Get PDF
    If dihydrogen (H2) becomes a major part of the energy mix, massive storage in underground gas storage (UGS), such as in deep aquifers, will be needed. The development of H2 requires a growing share of H2 in natural gas (and its current infrastructure), which is expected to reach approximately 2% in Europe. The impact of H2 in aquifers is uncertain, mainly because its behavior is site dependent. The main concern is the consequences of its consumption by autochthonous microorganisms, which, in addition to energy loss, could lead to reservoir souring and alter the petrological properties of the aquifer. In this work, the coinjection of 2% H2 in a natural gas blend in a low-salinity deep aquifer was simulated in a three-phase (aquifer rock, formation water, and natural gas/H2 mix) high-pressure reactor for 3 months with autochthonous microorganisms using a protocol described in a previous study. This protocol was improved by the addition of protocol coupling experimental measures and modeling to calculate the pH and redox potential of the reactor. Modeling was performed to better analyze the experimental data. As in previous experiments, sulfate reduction was the first reaction to occur, and sulfate was quickly consumed. Then, formate production, acetogenesis, and methanogenesis occurred. Overall, H2 consumption was mainly caused by methanogenesis. Contrary to previous experiments simulating H2 injection in aquifers of higher salinity using the same protocol, microbial H2 consumption remained limited, probably because of nutrient depletion. Although calcite dissolution and iron sulfide mineral precipitation likely occurred, no notable evolution of the rock phase was observed after the experiment. Overall, our results suggested that H2 can be stable in this aquifer after an initial loss. More generally, aquifers with low salinity and especially low electron acceptor availability should be favored for H2 costorage with natural gas

    Preclinical evaluation of Imatinib does not support its use as an antiviral drug against SARS-CoV-2

    Get PDF
    Following the emergence of SARS-CoV-2, the search for an effective and rapidly available treatment was initiated worldwide based on repurposing of available drugs. Previous reports described the antiviral activity of certain tyrosine kinase inhibitors (TKIs) targeting the Abelson kinase 2 against pathogenic coronaviruses. Imatinib, one of them, has more than twenty years of safe utilization for the treatment of hematological malignancies. In this context, Imatinib was rapidly evaluated in clinical trials against Covid-19. Here, we present the pre-clinical evaluation of imatinib in multiple models. Our results indicated that imatinib and another TKI, the masitinib, exhibit an antiviral activity in VeroE6 cells. However, imatinib was inactive in a reconstructed bronchial human airway epithelium model. In vivo, imatinib therapy failed to impair SARS-CoV-2 replication in a golden Syrian hamster model despite high concentrations in plasma and in the lung. Overall, these results do not support the use of imatinib and similar TKIs as antivirals in the treatment of Covid-19

    Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Usher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool.</p> <p>Methods</p> <p>We sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH patients (27 USH1, 21 USH2 and 6 USH3).</p> <p>Results</p> <p>Biallelic mutations were detected in 39 patients (72%) and monoallelic mutations in an additional 10 patients (18.5%). In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in another USH gene were detected in seven patients (13%), and another patient carried monoallelic mutations in three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray would have detected only 30 of the 81 different mutations that we found, of which 39 (48%) were novel.</p> <p>Conclusions</p> <p>Based on these results, complete exon sequencing of the currently known USH genes stands as a definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of gene therapy.</p
    corecore