122 research outputs found

    Heat Sensing Receptor TRPV1 Is a Mediator of Thermotaxis in Human Spermatozoa

    Get PDF
    The molecular bases of sperm thermotaxis, the temperature-oriented cell motility, are currently under investigation. Thermal perception relies on a subclass of the transient receptor potential [TRP] channels, whose member TRPV1 is acknowledged as the heat sensing receptor. Here we investigated the involvement of TRPV1 in human sperm thermotaxis. We obtained semen samples from 16 normozoospermic subjects attending an infertility survey programme, testis biopsies from 6 patients with testicular germ cell cancer and testis fine needle aspirates from 6 patients with obstructive azoospermia undergoing assisted reproductive technologies. Expression of TRPV1 mRNA was assessed by RT-PCR. Protein expression of TRPV1 was determined by western blot, flow cytometry and immunofluorescence. Sperm motility was assessed by Sperm Class Analyser. Acrosome reaction, apoptosis and intracellular-Ca2+ content were assessed by flow cytometry. We found that TRPV1 mRNA and protein were highly expressed in the testis, in both Sertoli cells and germ-line cells. Moreover, compared to no-gradient controls at 31°C or 37°C (Ctrl 31°C and Ctrl 37°C respectively), sperm migration towards a temperature gradient of 31-37°C (T gradient) in non-capacitated conditions selected a higher number of cells (14,9 ± 4,2×106 cells T gradient vs 5,1± 0,3×106 cells Ctrl 31°C and 5,71±0,74×106 cells Ctrl 37°C; P = 0,039). Capacitation amplified the migrating capability towards the T gradient. Sperms migrated towards the T gradient showed enriched levels of both TRPV1 protein and mRNA. In addition, sperm cells were able to migrate toward a gradient of capsaicin, a specific agonist of TRPV1, whilst capsazepine, a specific agonist of TRPV1, blocked this effect. Finally, capsazepine severely blunted migration towards T gradient without abolishing. These results suggest that TRPV1 may represent a facilitating mediator of sperm thermotaxis

    Cyclic Vomiting Syndrome in 41 adults: the illness, the patients, and problems of management

    Get PDF
    BACKGROUND: Cyclic Vomiting Syndrome (CVS) is a disorder characterized by recurrent, stereotypic episodes of incapacitating nausea, vomiting and other symptoms, separated by intervals of comparative wellness. This report describes the clinical features, co-morbidities and problems encountered in management of 41 adult patients who met the diagnostic criteria for CVS. METHODS: This is a retrospective study of adults with CVS seen between 1994 and 2003. Follow-up data were obtained by mailed questionnaires. RESULTS: Age of onset ranged from 2 to 49 years. The duration of CVS at the time of consultation ranged from less than 1 year to 49 years. CVS episodes were stereotypic in respect of their hours of onset, symptomatology and length. Ninety-three percent of patients had recognizable prodromes. Half of the patients experienced a constellation of symptoms consisting of CVS episodes, migraine diathesis, inter-episodic dyspeptic nausea and a history of panic attacks. Deterioration in the course of CVS is indicated by coalescence of episodes in time. The prognosis of CVS is favorable in the majority of patients. CONCLUSION: CVS is a disabling disorder affecting adults as well as children. Because its occurrence in adults is little known, patients experience delayed or mis-diagnosis and ineffectual, sometimes inappropriately invasive management

    Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems

    Get PDF
    A mathematical model is developed to analyse the hydrodynamics of a novel oscillating water column (OWC) in a hybrid wind-wave energy system. The OWC has a coaxial cylindrical structure in which the internal cylinder represents the mono-pile of an offshore wind turbine while the external cylinder has a skirt whose scope is to guide the wave energy flux inside the chamber. This layout is not casual, but consistent with the current approach to harnessing wave energy through hybrid systems. The device shape is rather complex and the boundary value problem is solved by applying the matching-method of eigenfunctions. Within the framework of a linearised theory, we model the turbine damping effects by assuming the airflow to be proportional to the air chamber pressure. Consequently, the velocity potential can be decomposed into radiation and diffraction problems. We study the effects of both skirt and internal radius dimensions on the power extraction efficiency for monochromatic and random waves. We show that the skirt has strong effects on the global behaviour, while the internal cylinder affects the values of the sloshing eigenfrequencies. Finally, we validate the analytical model with laboratory data and show a good agreement between analytical and experimental results

    High Power Thermoelectric Generator Based on Vertical Silicon Nanowires

    No full text
    Thermoelectric generators, which convert heat directly into electrical power, have great potentialities in the energy harvesting field. The exploitation of these potentialities is limited by the materials currently used, characterized by good thermoelectric properties, but also by several drawbacks. This work presents a silicon-based thermoelectric generator, made of a large collection of heavily p-doped silicon nanostructures. This macroscopic device (area of several mm2) collects together the good thermoelectric features of silicon, in terms of high power factor, and a very reduced thermal conductivity, which resulted in being exceptionally low (1.8 W/(m K), close to the amorphous limit). The generated electrical power density is remarkably high for a Si-based thermoelectric generator, and it is suitable for scavenging applications which can exploit small temperature differences. A full characterization of the device (Seebeck coefficient, thermal conductivity, maximum power output) is reported and discussed
    • …
    corecore