14 research outputs found

    First tests of the applicability of γ\gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements

    Full text link
    In this work we explore for the first time the applicability of using γ\gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3_3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a 197^{197}Au sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.Comment: Preprint submitted to Nucl. Instr. and Meth.

    First tests of the applicability of γ-ray imaging for background discrimination in time-of-flight neutron capture measurements

    Get PDF
    In this work we explore for the first time the applicability of using γ-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a 197Au sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.España, Ministerio de Economía y Competitivdad FPA2011-24553España, Ministerio de Economía y Competitivdad FPA2013-45083-PEspaña, Ministerio de Economía y Competitivdad SEV-2014-039

    The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden’s Star

    Get PDF
    Context.Teegarden’s Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0 V),the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES.Aims.As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden’sStar and analysed them for planetary signals.Methods.We find periodic variability in the radial velocities of Teegarden’s Star. We also studied photometric measurements to rule out stellarbrightness variations mimicking planetary signals.Results.We find evidence for two planet candidates, each with 1.1M⊕minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. Noevidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotationand old age.Conclusions.The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cooldwarf for which the masses have been determined using radial velocities.We thank the referee Rodrigo Díaz for a careful review andhelpful comments. M.Z. acknowledges support from the Deutsche Forschungs-gemeinschaft under DFG RE 1664/12-1 and Research Unit FOR2544 “BluePlanets around Red Stars”, project no. RE 1664/14-1. CARMENES isan instrument for the Centro Astronómico Hispano-Alemán de Calar Alto(CAHA, Almería, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de InvestigacionesCientíficas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut für Astronomie, Instituto de Astrofísica de Andalucía, LandessternwarteKönigstuhl, Institut de Ciències de l’Espai, Institut für Astrophysik Göttingen,Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenburg,Instituto de Astrofísica de Canarias, Hamburger Sternwarte, Centro de Astro-biología and Centro Astronómico Hispano-Alemán), with additional contribu-tions by the Spanish Ministry of Economy, the German Science Foundationthrough the Major Research Instrumentation Programme and DFG ResearchUnit FOR2544 “Blue Planets around Red Stars”, the Klaus Tschira Stiftung, thestates of Baden-Württemberg and Niedersachsen, and by the Junta de Andalucía.Based on data from the CARMENES data archive at CAB (INTA-CSIC). Thisarticle is based on observations made with the MuSCAT2 instrument, devel-oped by ABC, at Telescopio Carlos Sánchez operated on the island of Tener-ife by the IAC in the Spanish Observatorio del Teide. Data were partly col-lected with the 150-cm and 90-cm telescopes at the Sierra Nevada Observa-tory (SNO) operated by the Instituto de Astrofísica de Andalucía (IAA-CSIC).Data were partly obtained with the MONET/South telescope of the MOnitoringNEtwork of Telescopes, funded by the Alfried Krupp von Bohlen und HalbachFoundation, Essen, and operated by the Georg-August-Universität Göttingen,the McDonald Observatory of the University of Texas at Austin, and the SouthAfrican Astronomical Observatory. We acknowledge financial support from theSpanish Agencia Estatal de Investigación of the Ministerio de Ciencia, Inno-vación y Universidades and the European FEDER/ERF funds through projectsAYA2015-69350-C3-2-P, AYA2016-79425-C3-1/2/3-P, AYA2018-84089, BES-2017-080769, BES-2017-082610, ESP2015-65712-C5-5-R, ESP2016-80435-C2-1/2-R, ESP2017-87143-R, ESP2017-87676-2-2, ESP2017-87676-C5-1/2/5-R, FPU15/01476, RYC-2012-09913, the Centre of Excellence ”Severo Ochoa”and ”María de Maeztu” awards to the Instituto de Astrofísica de Canarias (SEV-2015-0548), Instituto de Astrofísica de Andalucía (SEV-2017-0709), and Cen-tro de Astrobiología (MDM-2017-0737), the Generalitat de Catalunya throughCERCA programme”, the Deutsches Zentrum für Luft- und Raumfahrt throughgrants 50OW0204 and 50OO1501, the European Research Council through grant694513, the Italian Ministero dell’instruzione, dell’università de della ricerca andUniversità degli Studi di Roma Tor Vergata through FFABR 2017 and “Mis-sion: Sustainability 2016”, the UK Science and Technology Facilities Council through grant ST/P000592/1, the Israel Science Foundation through grant848/16, the Chilean CONICYT-FONDECYT through grant 3180405, the Mexi-can CONACYT through grant CVU 448248, the JSPS KAKENHI through grantsJP18H01265 and 18H05439, and the JST PRESTO through grant JPMJPR1775

    The CARMENES search for exoplanets around M dwarfs High-resolution optical and near-infrared spectroscopy of 324 survey stars

    Get PDF
    The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520–1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700–900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s−1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3–4 m s−1

    The CARMENES search for exoplanets around M dwarfs HD147379 b: A nearby Neptune in the temperate zone of an early-M dwarf

    Get PDF
    We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 (V = 8.9 mag, M = 0.58 ± 0.08 M⊙), a bright M0.0 V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of K = 5.1 ± 0.4 m s−1 and a period of P = 86.54 ± 0.06 d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass mP sin i = 25 ± 2 M⊕, 1.5 times the mass of Neptune, with an orbital semi-major axis a = 0.32 au and low eccentricity (e < 0.13). HD 147379 b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1 d (and its first harmonic), which we attribute to the rotation period of the star.FEDER/ERF FICTS-2011-02 fundsMajor Research Instrumentation Programme and DFG Research Unit FOR2544 “Blue Planets around Red StarsEuropean Research Council (ERC-279347), Deutsche Forschungsgemeinschaft (RE 1664/12-1, RE 2694/4-1), Bundesministerium für Bildung und Forschung (BMBF-05A14MG3, BMBF-05A17MG3), Spanish Ministry of Economy and Competitiveness (MINECO, grants AYA2015-68012-C2-2-P, AYA2016-79425-C3-1,2,3-P, AYA2015-69350-C3-2-P, AYA2014-54348-C03- 01, AYA2014-56359-P, AYA2014-54348-C3-2-R, AYA2016-79425-C3-3-P and 2013 Ramòn y Cajal program RYC-2013-14875), Fondo Europeo de Desarrollo Regional (FEDER, grant ESP2016-80435-C2-1-R, ESP2015-65712-C5- 5-R), Generalitat de Catalunya/CERCA programme, Spanish Ministerio de Educación, Cultura y Deporte, programa de Formación de Profesorado Universitario (grant FPU15/01476), Deutsches Zentrum für Luft- und Raumfahrt (grants 50OW0204 and 50OO1501), Office of Naval Research Global (award no. N62909-15-1-2011), Mexican CONACyT grant CB-2012-183007

    The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star

    No full text
    Context. Teegarden's Star is the brightest and one of the nearest ultra- cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0 V), the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES. Aims: As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden's Star and analysed them for planetary signals. Methods: We find periodic variability in the radial velocities of Teegarden's Star. We also studied photometric measurements to rule out stellar brightness variations mimicking planetary signals. Results: We find evidence for two planet candidates, each with 1.1 M⊕ minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. No evidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotation and old age. Conclusions: The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cool dwarf for which the masses have been determined using radial velocities. Tables D.1 and D.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/627/A49</A

    The CARMENES search for exoplanets around M dwarfs: First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems

    No full text
    The appendix tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A117Context. The main goal of the CARMENES survey is to find Earth-mass planets around nearby M-dwarf stars. Seven M dwarfs included in the CARMENES sample had been observed before with HIRES and HARPS and either were reported to have one short period planetary companion (GJ 15 A, GJ 176, GJ 436, GJ 536 and GJ 1148) or are multiple planetary systems (GJ 581 and GJ 876). Aims. We aim to report new precise optical radial velocity measurements for these planet hosts and test the overall capabilities of CARMENES. Methods. We combined our CARMENES precise Doppler measurements with those available from HIRES and HARPS and derived new orbital parameters for the systems. Bona-fide single planet systems were fitted with a Keplerian model. The multiple planet systems were analyzed using a self-consistent dynamical model and their best fit orbits were tested for long-term stability. Results. We confirm or provide supportive arguments for planets around all the investigated stars except for GJ 15 A, for which we find that the post-discovery HIRES data and our CARMENES data do not show a signal at 11.4 days. Although we cannot confirm the super-Earth planet GJ 15 Ab, we show evidence for a possible long-period (P = 7030 d) Saturn-mass (msini = 51.8M) planet around GJ 15 A. In addition, based on our CARMENES and HIRES data we discover a second planet around GJ 1148, for which we estimate a period P = 532.6 days, eccentricity e = 0.342 and minimum mass msini = 68.1M. Conclusions. The CARMENES optical radial velocities have similar precision and overall scatter when compared to the Doppler measurements conducted with HARPS and HIRES. We conclude that CARMENES is an instrument that is up to the challenge of discovering rocky planets around low-mass stars.© ESO, 2018.CARMENES is an instrument for the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Insitut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation (DFG), the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, the DFG Research Unit FOR2544 >Blue Planets around Red Stars>, and by the Junta de Andalucia. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work used the Systemic Console package (Meschiari et al. 2009) for cross-checking our Keplerian and Dynamical fits and the python package astroML (VanderPlas et al. 2012) for the calculation of the GLS periodogram. The IEEC-CSIC team acknowledges support by the Spanish Ministry of Economy and Competitiveness (MINECO) and the Fondo Europeo de Desarrollo Regional (FEDER) through grant ESP2016-80435-C2-1-R, as well as the support of the Generalitat de Catalunya/CERCA programme. The IAA-CSIC team acknowledges support by the Spanish Ministry of Economy and Competitiveness (MINECO) through grants AYA2014-54348-C03-01 and AYA2016-79425-C3-3-P as well as FEDER funds. The UCM team acknowledges support by the Spanish Ministry of Economy and Competitiveness (MINECO) from projects AYA2015-68012-C2-2-P and AYA2016-79425- C3-1,2,3-P and the Spanish Ministerio de Educacion, Cultura y Deporte, programa de Formacion de Profesorado Universitario, under grant FPU15/01476. T. T. and M.K. thank to Jan Rybizki for the very helpful discussion in the early phases of this work. V.J.S.B. is supported by grant AYA2015-69350-C3-2-P from the Spanish Ministry of Economy and Competiveness (MINECO). J.C.S. acknowledges funding support from Spanish public funds for research under project ESP2015-65712-C5-5-R (MINECO/FEDER), and under Research Fellowship program >Ramon y Cajal> with reference RYC2012-09913 (MINECO/FEDER). The contributions of M.A. were supported by DLR (Deutsches Zentrum fur Luft- und Raumfahrt) through the grants 50OW0204 and 50OO1501. J.L.-S. acknowledges the Office of Naval Research Global (award No. N62909-15- 1-2011) for support. C.d.B. acknowledges that this work has been supported by Mexican CONACyT research grant CB-2012-183007 and the Spanish Ministry of Economy and Competitivity through projects AYA2014-54348-C3-2-R. J.I.G.H., and R.R. acknowledge financial support from the Spanish Ministry project MINECO AYA2014-56359-P. J.I.G.H. also acknowledges financial support from the Spanish MINECO under the 2013 Ramon y Cajal program MINECO RYC-2013-14875. V. Wolthoff acknowledges funding from the DFG Research Unit FOR2544 >Blue Planets around Red Stars>, project No. RE 2694/4-1.We thank the anonymous referee for the excellent comments that helped to improve the quality of this paper

    The CARMENES search for exoplanets around M dwarfs. High-resolution optical and near-infrared spectroscopy of 324 survey stars

    No full text
    The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520-1710 nm at a resolution of at least R &gt;80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify th

    The CARMENES search for exoplanets around M dwarfs: High-resolution optical and near-infrared spectroscopy of 324 survey stars

    No full text
    The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520¿1710 nm at a resolution of at least R >80 000, and we measure its RV, H¿ emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700¿900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s¿1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4 m s-1. © ESO 2018.We thank an anonymous referee for prompt attention and helpful comments that helped to improve the quality of this paper. CARMENES is an instrument for the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Insitut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Economy, the German Science Foundation through the Major Research Instrumentation Programme and DFG Research Unit FOR2544 >Blue Planets around Red Stars>, the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de Andalucia. This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna. We acknowledge the following funding programs: European Research Council (ERC-279347), Deutsche Forschungsgemeinschaft (RE 1664/12-1, RE 2694/4-1), Bundesministerium fur Bildung und Forschung (BMBF-05A14MG3, BMBF-05A17MG3), Spanish Ministry of Economy and Competitiveness (MINECO, grants AYA2015-68012-C2-2-P, AYA2016-79425-C3-1,2,3-P, AYA2015-69350-C3-2-P, AYA2014-54348-C03-01, AYA2014-56359-P, AYA2014-54348-C3-2R, AYA2016-79425-C3-3-P and 2013 Ramon y Cajal program RYC-2013-14875), Fondo Europeo de Desarrollo Regional (FEDER, grant ESP2016-80435-C2-1-R, ESP2015-65712-C5-5-R), Generalitat de Catalunya/CERCA programme, Spanish Ministerio de Educacion, Cultura y Deporte, programa de Formacion de Profesorado Universitario (grant FPU15/01476), Deutsches Zentrum fur Luft- und Raumfahrt (grants 50OW0204 and 50OO1501), Office of Naval Research Global (award no. N62909-15-1-2011), Mexican CONACyT grant CB-2012-183007
    corecore