26 research outputs found

    Drug Discovery for Kinetoplastid Diseases : Future Directions

    Get PDF
    International audienceKinetoplastid parasites have caused human disease for millennia. Significant achievements have been made toward developing new treatments for leishmaniasis (particularly on the Indian subcontinent) and for human African trypanosomiasis (HAT). Moreover, the sustained decrease in the incidence of HAT has made the prospect of elimination a tantalizing reality. Despite the gains, no new chemical or biological entities to treat kinetoplastid diseases have been registered in more than three decades, and more work is needed to discover safe and effective therapies for patients with Chagas disease and leishmaniasis. Advances in tools for drug discovery and novel insights into the biology of the host-parasite interaction may provide opportunities for accelerated progress. Here, we summarize the output from a gathering of scientists and physicians who met to discuss the current status and future directions in drug discovery for kinetoplastid diseases

    Epitope and affinity determination of recombinant Mycobacterium tuberculosis Ag85B antigen towards anti-Ag85 antibodies using proteolytic affinity-mass spectrometry and biosensor analysis

    Get PDF
    Tuberculosis (TB) is the first cause of death from infectious diseases worldwide. Only a single anti-TB vaccine is currently available for clinical use, but its efficacy is not achieved with certainty. The aim of this work is to provide a basis for the rational design of a neo-glycoconjugate vaccine against TB. Structural characterization of recombinant antigenic proteins from Mycobacterium tuberculosis (MTB) Ag85B (rAg85B, variants, and semi-synthetic glycoconjugates) was initially carried out. Identification of antibody epitope analyses by proteolytic affinity-mass spectrometry and surface plasmon resonance (SPR) biosensor analyses were performed in order to qualitatively identify and quantitatively characterize interaction structures of the antigens with antibodies from different sources. A commercial monoclonal antibody and polyclonal antibodies from different sources (patients with active TB, vaccinated individuals, and a healthy control) were employed to analyze antigen-antibody interactions. These combined approaches provided the identification of different assembled epitope regions on the recombinant MTB antigens, their affinity binding constants in the interactions with specific antibodies, and revealed the importance of protection from excessive glycosylation. The identified epitope peptides should constitute a suitable basis for the design of new specific target vaccines

    Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum

    Get PDF
    BACKGROUND: The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS: We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. CONCLUSION: Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology

    Novel 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidine derivatives and their antitrypanosomal activities against T.brucei

    No full text
    Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense and is invariably fatal unless treated. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work, informed by previous findings, presents novel 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidine derivatives with promising antitrypanosomal activity. In particular, 32 exhibits an in vitro EC50 value of 0.5 µM against Trypanosoma brucei rhodesiense, and analogues 29, 30 and 33 show antitrypanosomal activities in the </p
    corecore