17 research outputs found

    UNR facilitates the interaction of MLE with the lncRNA roX2 during Drosophila dosage compensation

    Get PDF
    Dosage compensation is a regulatory process that balances the expression of X-chromosomal genes between males (XY) and females (XX). In Drosophila, this requires non-coding RNAs and RNA-binding proteins (RBPs) whose specific functions remain elusive. Here we show that the Drosophila RBP UNR promotes the targeting of the activating male-specific-lethal complex to the X-chromosome by facilitating the interaction of two crucial subunits: the RNA helicase MLE and the long non-coding RNA roX2

    JASPer controls interphase histone H3S10 phosphorylation by chromosomal kinase JIL-1 in Drosophila

    Get PDF
    In flies, the chromosomal kinase JIL-1 is responsible for most interphase histone H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks, such as dimethylated histone H3K9 (H3K9me2) and HP1. Here, we show that JIL-1's targeting to chromatin depends on a PWWP domain-containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). JASPer-JIL-1 (JJ)-complex is the major form of kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes, to modulate transcriptional output. JIL-1 and JJ-complex depletion in cycling cells lead to small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identify interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatin formation but also coordinates chromatin-based regulation in the transcribed part of the genome

    Détermination de la structure secondaire d'une région de l'ARN Xist nécessaire à l'inactivation du chromosome X, la région des A-repeats, et identification de ses partenaires protéiques ayant un rôle structural ou fonctionnel dans l'inactivation

    No full text
    Silencing of one X chromosome (XCI) in cells of mammalian female ensures sex chromosome dosage compensation between male and female. The 17kb Xist ncRNA plays an essential role in XCI. Its spread along the future inactivated X chromosome is associated with major modifications of the epigenetic status of this chromosome, including histone H3K27 methylations mediated by PRC2 complex. One key part of Xist necessary for XCI initiation is the phylogenetically conserved A region. It lies at the 5' end of the Xist molecule and contains 8 of a 24-nucleotides motif. Female mouse embryos carrying a mutated Xist deleted for the A region are selectively lost during embryogenesis, which underlines the importance of this element. We performed the first experimental analysis of the structure of the entire A region in solution. By the use of chemical and enzymatic probes and FRET experiments, using oligonucleotides carrying fluorescent dyes, we established a 2D structure for the A region that contains two long stem-loop structures each including 4 repeats which interact together two by two. By immunoprecipitation assays and mass spectrometry analysis, we identified the protein partners of the A region. We demonstrated that the A region associate with PRC2 components which is responsible for the apposition of epigenetic modifications of X inactive chromosome. Others proteins which would have a role in A region function were also identified (PTB, KSRP, Sam68, Vigiline, RHA, TIAR, DEK, H1, BRML1, Rod1, Lin28).L'inactivation d'un des deux chromosomes X dans les cellules d'organismes femelles permet d'assurer un taux similaire des transcrits des gènes liés aux chromosomes X entre les deux sexes. L'ARN non codant Xist d'environ 17000 nts joue un rôle central dans ce processus. Il habille le futur chromosome X inactivé et induit la mise en place de modifications épigénétiques qui permettent d'éteindre l'expression des gènes. Une région d'approximativement 500 nts située à l'extrémité 5' de l'ARN Xist est nécessaire à l'initiation de l'inactivation. Cette région appelée region des A-repeats contient 8 répétitions d'une séquence de 24 nucléotides. La délétion de cette région provoque un défaut d'inactivation, ce qui souligne son importance dans le processus. Etant donné que la fonction d'un ARN est bien souvent conditionnée par sa structure 2D, mon travail de thèse a consisté à réaliser l'étude expérimentale de la structure 2D de la région des A-repeats, ceci en utilisant des sondes de la structure secondaire des ARN en solution et une méthode de FRET. Nous avons montré que la région des A-repeats se structure selon 2 grandes structures tige-boucle irrégulières formées par l'appariement 2 à 2 des éléments répétés. Par purification des RNP et identification de leurs protéines, nous avons démontré que le complexe PRC2, impliqué dans la mise en place des marques épigénétiques du Xi, se lie à la région des A-repeats. Nous avons également identifié un grand nombre d'autres protéines pouvant avoir un rôle dans l'activité de la région des A-repeats (PTB, KSRP, Sam68, Vigiline, RHA, TIAR, DEK, H1, BRML1, Rod1, Lin28). Leurs implications dans l'inactivation du chromosome X est en cours de vérification

    2D structure determination of a region from Xist RNA involved in X chromosome inactivation called the A-repeats region and identification of its protein partners having a structural or functional role in X inactivation

    No full text
    L’inactivation d’un des deux chromosomes X dans les cellules d’organismes femelles permet d’assurer un taux similaire des transcrits des gènes liés aux chromosomes X entre les deux sexes. L’ARN non codant Xist d’environ 17000 nts joue un rôle central dans ce processus. Il habille le futur chromosome X inactivé et induit la mise en place de modifications épigénétiques qui permettent d’éteindre l’expression des gènes. Une région d’approximativement 500 nts située à l’extrémité 5’ de l’ARN Xist est nécessaire à l’initiation de l’inactivation. Cette région appelée region des A-repeats contient 8 répétitions d’une séquence de 24 nucléotides. La délétion de cette région provoque un défaut d’inactivation, ce qui souligne son importance dans le processus. Etant donné que la fonction d’un ARN est bien souvent conditionnée par sa structure 2D, mon travail de thèse a consisté à réaliser l’étude expérimentale de la structure 2D de la région des A-repeats, ceci en utilisant des sondes de la structure secondaire des ARN en solution et une méthode de FRET. Nous avons montré que la région des A-repeats se structure selon 2 grandes structures tige-boucle irrégulières formées par l’appariement 2 à 2 des éléments répétés. Par purification des RNP et identification de leurs protéines, nous avons démontré que le complexe PRC2, impliqué dans la mise en place des marques épigénétiques du Xi, se lie à la région des A-repeats. Nous avons également identifié un grand nombre d’autres protéines pouvant avoir un rôle dans l’activité de la région des A-repeats (PTB, KSRP, Sam68, Vigiline, RHA, TIAR, DEK, H1, BRML1, Rod1, Lin28). Leurs implications dans l’inactivation du chromosome X est en cours de vérification.Silencing of one X chromosome (XCI) in cells of mammalian female ensures sex chromosome dosage compensation between male and female. The 17kb Xist ncRNA plays an essential role in XCI. Its spread along the future inactivated X chromosome is associated with major modifications of the epigenetic status of this chromosome, including histone H3K27 methylations mediated by PRC2 complex. One key part of Xist necessary for XCI initiation is the phylogenetically conserved A region. It lies at the 5’ end of the Xist molecule and contains 8 of a 24-nucleotides motif. Female mouse embryos carrying a mutated Xist deleted for the A region are selectively lost during embryogenesis, which underlines the importance of this element. We performed the first experimental analysis of the structure of the entire A region in solution. By the use of chemical and enzymatic probes and FRET experiments, using oligonucleotides carrying fluorescent dyes, we established a 2D structure for the A region that contains two long stem-loop structures each including 4 repeats which interact together two by two. By immunoprecipitation assays and mass spectrometry analysis, we identified the protein partners of the A region. We demonstrated that the A region associate with PRC2 components which is responsible for the apposition of epigenetic modifications of X inactive chromosome. Others proteins which would have a role in A region function were also identified (PTB, KSRP, Sam68, Vigiline, RHA, TIAR, DEK, H1, BRML1, Rod1, Lin28)

    Live cell imaging of the nascent inactive X chromosome during the early differentiation process of naive ES cells towards epiblast stem cells.

    No full text
    Random X-chromosome inactivation ensures dosage compensation in mammals through the transcriptional silencing of one of the two X chromosomes present in each female cell. Silencing is initiated in the differentiating epiblast of the mouse female embryos through coating of the nascent inactive X chromosome by the non-coding RNA Xist, which subsequently recruits the Polycomb Complex PRC2 leading to histone H3-K27 methylation. Here we examined in mouse ES cells the early steps of the transition from naive ES cells towards epiblast stem cells as a model for inducing X chromosome inactivation in vitro. We show that these conditions efficiently induce random XCI. Importantly, in a transient phase of this differentiation pathway, both X chromosomes are coated with Xist RNA in up to 15% of the XX cells. In an attempt to determine the dynamics of this process, we designed a strategy aimed at visualizing the nascent inactive X-chromosome in live cells. We generated transgenic female XX ES cells expressing the PRC2 component Ezh2 fused to the fluorescent protein Venus. The fluorescent fusion protein was expressed at sub-physiological levels and located in nuclei of ES cells. Upon differentiation of ES cell towards epiblast stem cell fate, Venus-fluorescent territories appearing in interphase nuclei were identified as nascent inactive X chromosomes by their association with Xist RNA. Imaging of Ezh2-Venus for up to 24 hours during the differentiation process showed survival of some cells with two fluorescent domains and a surprising dynamics of the fluorescent territories across cell division and in the course of the differentiation process. Our data reveal a strategy for visualizing the nascent inactive X chromosome and suggests the possibility for a large plasticity of the nascent inactive X chromosome

    Implication of repeat insertion domains in the trans -activity of the long non-coding RNA ANRIL

    No full text
    International audienceAbstract Long non-coding RNAs have emerged as critical regulators of cell homeostasis by modulating gene expression at chromatin level for instance. Here, we report that the lncRNA ANRIL, associated with several pathologies, binds to thousands of loci dispersed throughout the mammalian genome sharing a 21-bp motif enriched in G/A residues. By combining ANRIL genomic occupancy with transcriptomic analysis, we established a list of 65 and 123 genes potentially directly activated and silenced by ANRIL in trans, respectively. We also found that Exon8 of ANRIL, mainly made of transposable elements, contributes to ANRIL genomic association and consequently to its trans-activity. Furthermore, we showed that Exon8 favors ANRIL’s association with the FIRRE, TPD52L1 and IGFBP3 loci to modulate their expression through H3K27me3 deposition. We also investigated the mechanisms engaged by Exon8 to favor ANRIL’s association with the genome. Our data refine ANRIL’s trans-activity and highlight the functional importance of TEs on ANRIL’s activity

    The Ezh2-Venus protein is recruited at the nascent inactive X chromosome in differentiated ES cells.

    No full text
    <p>A) Schematic strategy for the COOH-tagging of the Ezh2 protein expressed from a mouse BAC DNA. B) Expression of the Ezh2-Venus fusion protein in ES cells. Western blotting using an Ezh2 antibody and nuclear extracts from the parental ES cell line HP3-10 (WT) and from four neomycin-resistant clones transfected with Venus-tagged BAC DNA The arrow points to the migration level of the fusion protein. C) Nuclear localization of the Ezh2-Venus fusion protein in fixed ES cells. Wide-field fluorescent microscopy for Hoechst 33342 (blue, left panel) and Venus (green, right panel) of the Z8.1 ES cells cultured in 2i plus LIF and fixed for 3 minutes with 4% PFA. D) Ezh2-Venus nuclear foci are detectable in differentiated live female ES cells. Live imaging was performed on the Z8.1 ES cells after differentiation for 50 hours. Nuclear fluorescent foci of Venus signal are visible (green, left and central panel). DNA was stained with Hoechst 33342 (pseudo-colored in red) and overlaid on the phase contrast image (right panel) and on the Venus channel image (central panel). E) Ezh2-Venus nuclear foci correspond to <i>Xist</i> RNA clouds. Live cells of the Z8.1 line differentiated during 70 hours were imaged for Venus (top-left panel) and then fixed and processed for <i>Xist</i> RNA-FISH (top-right panel; DAPI blue, <i>Xist</i> green). Despite moderate shifts due to live cell movements prior to fixation, both panels show recognizable nuclei presenting similarly localized Ezh2-Venus and <i>Xist</i> nuclear territories. All nuclear Ezh2-Venus foci detected in live cells corresponded to a <i>Xist</i> RNA cloud (bottom panel, n = 60) although the reciprocal was not the same. F) In the course of differentiation, the kinetics of Ezh2-Venus foci is delayed as compared to the kinetics of <i>Xist</i> RNA accumulation. Duplicate samples at different time-points of the same differentiation experiment using the Z8.1 ES cell line, were processed for live imaging of Ezh2-Venus or for <i>Xist</i> RNA-FISH. Cells were counted for nuclear fluorescent territories after image acquisition. Bars on top of the columns represent standard deviation of the counts of three groups of cells (n>150 each) at each timepoint. Detection of Ezh2-Venus territories is delayed as compared with <i>Xist</i> clouds, which had already reached a plateau by 40 hours of differentiation in this experiment. The data presented in panel C to F have been reproduced with no significant difference for at least two other transgenic Ezh2-Venus ES cell lines.</p
    corecore