1,006 research outputs found
Interdisciplinary Practices in iSchools
Interdisciplinarity is in the DNA of the iSchools. This workshop invites you to discuss how inter-disciplinarity plays out in theory and practice. The workshop addresses the uniqueness of the iSchools, provides an interactive framework to discuss and reflect on interdisciplinary practice. It suggests some models and tools to describe relations between disciplines, while offering a venue to brainstorm and envision issues of interest with like-minded colleagues. The purpose of this workshop is to establish a setting for continuous dialogue among colleagues on how interdisciplinarity plays out in practice. The workshop aims to create a forum for reflection on local inter-disciplinary practice(s) and to consider the possibilities of forming research networks. The workshop opens with a panel presentation from iSchool deans and senior faculty discussing current interdisciplinarity practices in iSchools and with presentations that address theoretical frameworks of interdisciplinarity. These presentations will form the basis for small group discussions in the afternoon
Strangeness in Neutron Stars
It is generally agreed on that the tremendous densities reached in the
centers of neutron stars provide a high-pressure environment in which several
intriguing particles processes may compete with each other. These range from
the generation of hyperons to quark deconfinement to the formation of kaon
condensates and H-matter. There are theoretical suggestions of even more exotic
processes inside neutron stars, such as the formation of absolutely stable
strange quark matter. In the latter event, neutron stars would be largely
composed of strange quark matter possibly enveloped in a thin nuclear crust.
This paper gives a brief overview of these striking physical possibilities with
an emphasis on the role played by strangeness in neutron star matter, which
constitutes compressed baryonic matter at ultra-high baryon number density but
low temperature which is no accessible to relativistic heavy ion collision
experiments.Comment: 16 pages, 5 figures, 3 tables; Accepted for publication in the
Proceedings of the International Workshop on Astronomy and Relativistic
Astrophysics (IWARA) 2005, Int. J. Mod. Phys.
Congener-specific accumulation of persistent organic pollutants in marine fish from the Northeast Atlantic Ocean
Bioaccumulation of persistent organic pollutants (POPs) in marine fish may pose a health risk to human consumers. Using data from ∼8400 individuals of 15 fish species collected in the North-East Atlantic Ocean (NEAO), we assessed concentrations of individual POP congeners, including dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). POPs analyses were performed with accredited methods using high-resolution gas chromatography/high-resolution mass spectrometry, gas chromatography/tandem mass spectrometry (GC-MS/MS) and GC/MS. The results showed that POPs congener composition profiles were more influenced by fish species than by geography. However, due to long range transport from emissions at lower latitudes, lighter congeners made a larger contribution to the total POPs concentrations in the northernmost areas compared to southern regions. A model was developed to elucidate the relative effects of several factors on POPs concentrations and showed that variation among and within fish species was associated with fat content, fish size, trophic position, and latitude. For the first time, POPs concentrations were shown to increase nonlinearly with fat content, reaching an asymptotic plateau when fat content was > 10%. This study explored detailed POP congener profiles and the factors associated with POPs accumulation in commercially relevant fish harvested from the NEAO.publishedVersio
Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens epsilon prototoxin
Cells infiltrating into normal brain from malignant brain tumors are protected by the blood brain barrier (BBB) which prevents the delivery and limits the effects of anti-tumor agents. We have evaluated the ability of photochemical internalization (PCI) to limit the effects of an agent known to broadly open the BBB to a target region of the brain. The PCI-based relocation and activation of macromolecules into the cell cytosol has the advantage of minimal side effects since the effect is localized to the area exposed to light, allowing the access of chemotherapeutic agents only to these regions. Non tumor bearing inbred Fisher rats were treated with photosesitizer, and a nontoxic intraperitoneal dose of Clostridium perfringens epsilon prototoxin (ETXp) followed by light exposure. Post-contrast T1 MRI scans were used to monitor the degree BBB disruption. F98 tumor cells were implanted into the brains of other animals that were subsequently treated 24 h later with ETXp-PCI BBB opening followed by the i.p. administration of bleomycin (BLM). PCI delivery of ETXp at low fluence levels demonstrated significant MRI enhancement. No effect on the BBB was observed if photosesitizer and light was given in the absence ETXp. The survival of animals implanted with F98 tumor cells was significantly extended following ETXp-PCI BBB opening and BLM therapy compared to controls. PCI delivered ETXp was effective in opening the BBB in a limited region of the brain. ETXp-PCI mediated BBB opening clearly increased the efficacy of BLM therapy
Are rotating strange quark stars good sources of gravitational waves?
We study the viscosity driven (Jacobi-like) bar mode instability of rapidly
rotating strange stars in general relativity. A triaxial, "bar shaped" compact
star could be an efficient source of continuous wave gravitational radiation in
the frequency range of the forthcoming interferometric detectors. We locate the
secular instability point along several constant baryon mass sequences of
uniformly rotating strange stars described by the MIT bag model. Contrary to
neutron stars, strange stars with T/|W| (the ratio of the rotational kinetic
energy to the absolute value of the gravitational potential energy) much lower
than the corresponding value for the mass-shed limit can be secularly unstable
to bar mode formation if shear viscosity is high enough to damp out any
deviation from uniform rotation. The instability develops for a broad range of
gravitational masses and rotational frequencies of strange quark stars. It
imposes strong constraints on the lower limit of the frequency at the innermost
stable circular orbit around rapidly rotating strange stars. The above results
are robust for all linear self-bound equations of state assuming the growth
time of the instability is faster than the damping timescale. We discuss
astrophysical scenarios where triaxial instabilities (r-mode and viscosity
driven instability) could be relevant in strange stars described by the
standard MIT bag model of normal quark matter. Taking into account actual
values of viscosities in strange quark matter and neglecting the magnetic field
we show that Jacobi-like instability cannot develop in any astrophysicaly
interesting temperature windows. The main result is that strange quark stars
described by the MIT bag model can be accelerated to very high frequency in Low
Mass X-ray binaries if the strange quark mass is ~ 200 MeV or higher.Comment: 15 pages, 10 figures, to appear in Astronomy and Astrophysic
MBL2 and Hepatitis C Virus Infection among Injection Drug Users
<p>Abstract</p> <p>Background</p> <p>Genetic variations in <it>MBL2 </it>that reduce circulating levels and alter functional properties of the mannose binding lectin (MBL) have been associated with many autoimmune and infectious diseases. We examined whether <it>MBL2 </it>variants influence the outcome of hepatitis C virus (HCV) infection.</p> <p>Methods</p> <p>Participants were enrolled in the Urban Health Study of San Francisco Bay area injection drug users (IDU) during 1998 through 2000. Study subjects who had a positive test for HCV antibody were eligible for the current study. Participants who were positive for HCV RNA were frequency matched to those who were negative for HCV RNA on the basis of ethnicity and duration of IDU. Genotyping was performed for 15 single nucleotide polymorphisms in <it>MBL2</it>. Statistical analyses of European American and African American participants were conducted separately.</p> <p>Results</p> <p>The analysis included 198 study subjects who were positive for HCV antibody, but negative for HCV RNA, and 654 IDUs who were positive for both antibody and virus. There was no significant association between any of the genetic variants that cause MBL deficiency and the presence of HCV RNA. Unexpectedly, the <it>MBL2 </it>-289X promoter genotype, which causes MBL deficiency, was over-represented among European Americans who were HCV RNA negative (OR = 1.65, 95% CI 1.05–2.58), although not among the African Americans.</p> <p>Conclusion</p> <p>This study found no association between genetic variants that cause MBL deficiency and the presence of HCV RNA. The observation that <it>MBL2 </it>-289X was associated with the absence of HCV RNA in European Americans requires validation.</p
Immunolocalization of anion exchanger 1 (Band 3) in the renal collecting duct of the common marmoset
The purpose of this study was to determine the expression and distribution of band 3 in the collecting duct and connecting tubules of the kidney of the marmoset monkey (Callithrix jacchus), and to establish whether band 3 is expressed in type A intercalated cells. The intracellular localization of band 3 in the different populations of intercalated cells was determined by double-labeling immunohistochemistry. Immunohistochemical microscopy demonstrated that band 3 is located in the basolateral plasma membranes of all type A intercalated cells in the connecting tubule (CNT), cortical collecting duct (CCD), and outer medullary collecting duct (OMCD) of the marmoset. However, type B intercalated cells and non-A/non-B intercalated cells did not show band 3 labeling. Electron microscopy of the CNT, CCD and OMCD confirmed the light microscopic observation of the basolateral plasma membrane staining for band 3 in a subpopulation of interacted cells. Basolateral staining was seen on the plasma membrane and small coated vesicles in the perinuclear structure, some of which were located in the Golgi region. In addition, there was no labeling of band 3 in the mitochondria of the CNT, CCD and in OMCD cells. The intensity of the immunostaining of the basolateral membrane was less in the CNT than in the CCD and OMCD. In contrast, band 3 immunoreactivity was greater in the intracellular vesicles of the CNT. From these results, we suggest that the basolateral Cl-/HCO3- exchanger in the monkey kidney is in a more active state in the collecting duct than in the CNT
Constraining the physics of the r-mode instability in neutron stars with X-ray and UV observations
Rapidly rotating Neutron Stars in Low Mass X-ray Binaries (LMXBs) may be an
interesting source of Gravitational Waves (GWs). In particular, several modes
of stellar oscillation may be driven unstable by GW emission, and this can lead
to a detectable signal. Here we illustrate how current X-ray and ultra-violet
(UV) observations can constrain the physics of the r-mode instability. We show
that the core temperatures inferred from the data would place many systems well
inside the unstable region predicted by standard physical models. However, this
is at odds with theoretical expectations. We discuss different mechanisms that
could be at work in the stellar interior, and we show how they can modify the
instability window and make it consistent with the inferred temperatures.Comment: Submitted to MNRA
- …