1,151 research outputs found

    mAb product consistency achieved in long duration microfiltration-based CHO perfusion process

    Get PDF
    Perfusion processes have traditionally been used for the generation of unstable proteins in cell culture systems. The use of perfusion for production of stable proteins has been limited by low product concentration, media costs, and system complexity. However, with the advent of new single-use technology, cell culture media specifically formulated to support high density perfusion, and high-producing cell lines, perfusion processes are gaining widespread industry attention. Additionally, perfusion processes are considered an integral part of the “Factory of the Future” vision through enabling continuous processing while delivering a product effluent with consistent product quality and concentration. In this study, we evaluate the ability of a long duration perfusion process to deliver a consistent product stream. Although rarely reported, a reduction in protein sieving/transport through the microfiltration-based cell retention device is associated with many perfusion processes. To better understand this observation, we have investigated the impact of membrane pore size, membrane area, cross-flow rate, and mode of operation on protein sieving through a microfiltration-based cell retention device connected to a Mobius® 3L single-use bioreactor operated in a 30+ day perfusion process. It has also been reported that perfusion processes can be exploited to deliver a consistent product with more uniform product quality attributes. To support this observation, we will also present product quality data (i.e., glycosylation patterns, charge heterogeneity, product aggregation) for a long-duration mAb perfusion process and compare the results to a more traditional fed-batch process

    Adolescent Girls Offered Alternatives to Commercial Sexual Exploitation: A Case Study from the Philippines

    Get PDF
    Background: Up to 2% of adolescents and young women are subjected to commercial sexual exploitation (CSE) in the Philippines, an economically poor country that earns considerable revenue from “sex tourists.” Earlier research, in the 1990s in Metro Manila, described the living conditions of adolescents whose CSE was influenced by family poverty, their so-called “sex work” becoming a major source of income for families left behind in rural and provincial areas of Luzon. Recent research (up to 2014) indicates that conditions for adolescents experiencing CSE have, if anything, worsened. Methods: Following the original study, the researchers were able to offer scholarships with funds from a Canadian charity, which enabled 84 girls to leave “sex work,” and return to high school. Results: Follow-up 18 years later showed that being able to return to normal life, was successful for at least 61 (73%) of the young women who researchers were able to trace. Conclusions: We advocate vigorous efforts to prevent the recruitment and trafficking of adolescents into commercial sexual exploitation, and extend our comments to recent Canadian policy initiatives for adolescents experiencing CSE, since our original study was based on a Canada-Philippines comparison. In advocating the ‘universal living wage’ solution for avoidance of CSE, we argue that demonstration projects such as this can be important exemplars for global policy development

    Hubble Space Telescope Near-Infrared Snapshot Survey of 3CR Radio Source Counterparts at Low Redshift

    Get PDF
    We present newly acquired images of the near-infrared counterpart of 3CR radio sources. All the sources were selected to have a redshift of less than 0.3 to allow us to obtain the highest spatial resolution. The observations were carried out as a snapshot program using the Near-Infrared Camera and Multiobject Spectrograph (NICMOS) on-board the Hubble Space Telescope (HST). In this paper we describe 69 radio galaxies observed for the first time with NICMOS during HST cycle 13. All the objects presented here are elliptical galaxies. However, each of them has unique characteristics such as close companions, dust lanes, unresolved nuclei, arc-like features, globular clusters and jets clearly visible from the images or with basic galaxy subtraction

    Evaluation of the VISAGE Basic Tool for Appearance and Ancestry Prediction Using PowerSeq Chemistry on the MiSeq FGx System

    Get PDF
    The study of DNA to predict externally visible characteristics (EVCs) and the biogeographical ancestry (BGA) from unknown samples is gaining relevance in forensic genetics. Technical developments in Massively Parallel Sequencing (MPS) enable the simultaneous analysis of hundreds of DNA markers, which improves successful Forensic DNA Phenotyping (FDP). The EU-funded VISAGE (VISible Attributes through GEnomics) Consortium has developed various targeted MPS-based lab tools to apply FDP in routine forensic analyses. Here, we present an evaluation of the VISAGE Basic tool for appearance and ancestry prediction based on PowerSeq chemistry (Promega) on a MiSeq FGx System (Illumina). The panel consists of 153 single nucleotide polymorphisms (SNPs) that provide information about EVCs (41 SNPs for eye, hair and skin color from HIrisPlex-S) and continental BGA (115 SNPs; three overlap with the EVCs SNP set). The assay was evaluated for sensitivity, repeatability and genotyping concordance, as well as its performance with casework-type samples. This targeted MPS assay provided complete genotypes at all 153 SNPs down to 125 pg of input DNA and 99.67% correct genotypes at 50 pg. It was robust in terms of repeatability and concordance and provided useful results with casework-type samples. The results suggest that this MPS assay is a useful tool for basic appearance and ancestry prediction in forensic genetics for users interested in applying PowerSeq chemistry and MiSeq for this purpose.The study received support from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 740580 within the framework of the VISible Attributes through GEnomics (VISAGE) Project and Consortium. L.P.-M. is a recipient of a postdoctoral fellowship from the Doctoral Research Staff Improvement Program of the Basque Government Department of Education (POS_2018_1_0037). M.d.l.P. is funded from a grant provided by the Consellería de Cultura, Educación e Ordenación Universitaria and the Consellería de Economía, Emprego e Industria of the Xunta de Galicia (ED481B 2017/088). The 1000 Genomes high coverage sequence data were generated at the New York Genome Center with funds provided by NHGRI Grant 3UM1HG008901-03S1

    An optical-IR jet in 3C133

    Get PDF
    We report the discovery of a new optical-IR synchrotron jet in the radio galaxy 3C133 from our HST/NICMOS snapshot survey. The jet and eastern hotspot are well resolved, and visible at both optical and IR wavelengths. The IR jet follows the morphology of the inner part of the radio jet, with three distinct knots identified with features in the radio. The radio-IR SED's of the knots are examined, along with those of two more distant hotspots at the eastern extreme of the radio feature. The detected emission appears to be synchrotron, with peaks in the NIR for all except one case, which exhibits a power-law spectrum throughout.Comment: ApJ accepted. 14 pages, 6 figure

    Design and performance of the Fermilab Constant Fraction Discriminator ASIC

    Full text link
    We present the design and performance characterization results of the novel Fermilab Constant Fraction Discriminator ASIC (FCFD) developed to readout low gain avalanche detector (LGAD) signals by directly using a constant fraction discriminator (CFD) to measure signal arrival time. Silicon detectors with time resolutions less than 30 ps will play a critical role in future collider experiments, and LGADs have been demonstrated to provide the required time resolution and radiation tolerance for many such applications. The FCFD has a specially designed discriminator that is robust against amplitude variations of the signal from the LGAD that normally requires an additional correction step when using a traditional leading edge discriminator based measurement. The application of the CFD directly in the ASIC promises to be more reliable and reduces the complication of timing detectors during their operation. We will present a summary of the measured performance of the FCFD for input signals generated by internal charge injection, LGAD signals from an infrared laser, and LGAD signals from minimum-ionizing particles. The mean time response for a wide range of LGAD signal amplitudes has been measured to vary no more than 15 ps, orders of magnitude more stable than an uncorrected leading edge discriminator based measurement, and effectively removes the need for any additional time-walk correction. The measured contribution to the time resolution from the FCFD ASIC is also found to be 10 ps for signals with charge above 20 fC

    Evaluation of the VISAGE Basic Tool for Appearance and Ancestry Prediction Using PowerSeq Chemistry on the MiSeq FGx System

    Get PDF
    The study of DNA to predict externally visible characteristics (EVCs) and the biogeographical ancestry (BGA) from unknown samples is gaining relevance in forensic genetics. Technical developments in Massively Parallel Sequencing (MPS) enable the simultaneous analysis of hundreds of DNA markers, which improves successful Forensic DNA Phenotyping (FDP). The EU-funded VISAGE (VISible Attributes through GEnomics) Consortium has developed various targeted MPS-based lab tools to apply FDP in routine forensic analyses. Here, we present an evaluation of the VISAGE Basic tool for appearance and ancestry prediction based on PowerSeq chemistry (Promega) on a MiSeq FGx System (Illumina). The panel consists of 153 single nucleotide polymorphisms (SNPs) that provide information about EVCs (41 SNPs for eye, hair and skin color from HIrisPlex-S) and continental BGA (115 SNPs; three overlap with the EVCs SNP set). The assay was evaluated for sensitivity, repeatability and genotyping concordance, as well as its performance with casework-type samples. This targeted MPS assay provided complete genotypes at all 153 SNPs down to 125 pg of input DNA and 99.67% correct genotypes at 50 pg. It was robust in terms of repeatability and concordance and provided useful results with casework-type samples. The results suggest that this MPS assay is a useful tool for basic appearance and ancestry prediction in forensic genetics for users interested in applying PowerSeq chemistry and MiSeq for this purposeThe study received support from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 740580 within the framework of the VISible Attributes through GEnomics (VISAGE) Project and Consortium. L.P.-M. is a recipient of a postdoctoral fellowship from the Doctoral Research Staff Improvement Program of the Basque Government Department of Education (POS_2018_1_0037). M.d.l.P. is funded from a grant provided by the Consellería de Cultura, Educación e Ordenación Universitaria and the Consellería de Economía, Emprego e Industria of the Xunta de Galicia (ED481B 2017/088). The 1000 Genomes high coverage sequence data were generated at the New York Genome Center with funds provided by NHGRI Grant 3UM1HG008901-03S1S

    Alpsnmr: an r package for signal processing of fully untargeted nmr-based metabolomics

    Get PDF
    Nuclear magnetic resonance (NMR)-based metabolomics is widely used to obtain metabolic fingerprints of biological systems. While targeted workflows require previous knowledge of metabolites, prior to statistical analysis, untargeted approaches remain a challenge. Computational tools dealing with fully untargeted NMR-based metabolomics are still scarce or not user-friendly. Therefore, we developed AlpsNMR (Automated spectraL Processing System for NMR), an R package that provides automated and efficient signal processing for untargeted NMR metabolomics. AlpsNMR includes spectra loading, metadata handling, automated outlier detection, spectra alignment and peak-picking, integration and normalization. The resulting output can be used for further statistical analysis. AlpsNMR proved effective in detecting metabolite changes in a test case. The tool allows less experienced users to easily implement this workflow from spectra to a ready-to-use dataset in their routines
    corecore