Design and performance of the Fermilab Constant Fraction Discriminator ASIC

Abstract

We present the design and performance characterization results of the novel Fermilab Constant Fraction Discriminator ASIC (FCFD) developed to readout low gain avalanche detector (LGAD) signals by directly using a constant fraction discriminator (CFD) to measure signal arrival time. Silicon detectors with time resolutions less than 30 ps will play a critical role in future collider experiments, and LGADs have been demonstrated to provide the required time resolution and radiation tolerance for many such applications. The FCFD has a specially designed discriminator that is robust against amplitude variations of the signal from the LGAD that normally requires an additional correction step when using a traditional leading edge discriminator based measurement. The application of the CFD directly in the ASIC promises to be more reliable and reduces the complication of timing detectors during their operation. We will present a summary of the measured performance of the FCFD for input signals generated by internal charge injection, LGAD signals from an infrared laser, and LGAD signals from minimum-ionizing particles. The mean time response for a wide range of LGAD signal amplitudes has been measured to vary no more than 15 ps, orders of magnitude more stable than an uncorrected leading edge discriminator based measurement, and effectively removes the need for any additional time-walk correction. The measured contribution to the time resolution from the FCFD ASIC is also found to be 10 ps for signals with charge above 20 fC

    Similar works

    Full text

    thumbnail-image

    Available Versions