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An optical-IR jet in 3C 1331

David J. E. Floyd2

floyd@stsci.edu

Robert Laing3, Marco Chiaberge2, Eric Perlman4, William Sparks2, Duccio
Macchetto2, Juan Madrid2, David Axon5, Christopher P. O’Dea5, Stefi

Baum5, Alice Quillen6, George Miley7, Alessandro Capetti8

ABSTRACT

We report the discovery of a new optical-IR synchrotron jet in the radio galaxy
3C 133 from our HST/NICMOS snapshot survey. The jet and eastern hotspot
are well resolved, and visible at both optical and IR wavelengths. The IR jet
follows the morphology of the inner part of the radio jet, with three distinct
knots identified with features in the radio. The radio-IR SED’s of the knots are
examined, along with those of two more distant hotspots at the eastern extreme
of the radio feature. The detected emission appears to be synchrotron, with
peaks in the NIR for all except one case, which exhibits a power-law spectrum
throughout.

Subject headings: galaxies: active — galaxies: individual (3C 133) — galaxies: jets
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1. Introduction

Non-thermal radiation at optical-IR
wavelengths is a rare phenomenon, occur-
ring only in high energy situations such
as radio jets close to the nuclei of active
galaxies, and in recently exploded super-
nova remnants. The jet phenomenon it-

versity of Rochester, Bausch & Lomb Hall, P.O.
Box 270171, 600 Wilson Boulevard, Rochester, NY
14627.

7Leiden Observatory, P.O. Box 9513, NL-2300
RA Leiden, The Netherlands.

8INAF–Osservatorio Astronomico di Torino,
Strada Osservatorio 20, 10025 Pino Torinese, Italy.
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self is ubiquitous in radio galaxies at ra-
dio wavelengths (Bridle and Perley 1984)
where fast, light outflows are rendered de-
tectable through synchrotron emission of
relativistic particles moving through mag-
netic fields. Synchrotron emission occurs
across a wide wavelength range, but the
number of jets identified at higher ener-
gies remains small. Jets are now under-
stood as an integral part of the standard
model of AGN (Begelman et al. 1984) as a
means of transporting energy from central
engine to the lobes of radio galaxies. There
is strong evidence that a central super-
massive black-hole provides the ultimate
energy source, but the mechanisms of en-
ergy transport, particle acceleration, and
collimation of the jet material are poorly
understood.

Strong magnetic fields may help acceler-
ate particles to the high energies required
to produce optical-IR synchrotron emis-
sion. However these fields also shorten
the already brief radiative timescale (τ ∝

B−2 <
∼

103 yr), thus making low magnetic
fields the optimal sites for the detection
of optical-IR jets and hotspots (Brunetti
et al. 2003). The short timescales make
optical-IR jets powerful observational tools
in understanding the physics of accelera-
tion. They are believed to require recent
(re-) acceleration, since the energy-loss
timescales are shorter than the light-travel
time from the central engine. Note, how-
ever, that the effects of relativistic beam-
ing and time dilation need to be taken
into account: Heinz and Begelman (1997)
and Gopal-Krishna et al. (2001) suggest
that there is no requirement for reacceler-
ation if this is done.

To obtain a better understanding of

these physical conditions in jets we need
to study both their morphologies and
their spectral energy distributions (SED’s)
across a large spectral range. Thanks to
new discoveries by the Hubble Space Tele-

scope (HST), the number of known extra-
galactic optical-IR jets has grown rapidly
over the last decade 1, but the major-
ity of discoveries are in a single broad
band and at comparatively low redshifts
(z ≪ 0.1) due to the inherent faintness
of the sources. The most detailed multi-
wavelength work has been done on promi-
nent nearby or bright AGN such as M 87
(discovered by Curtis 1918, but see Wa-
ters and Zepf 2005 and references therein)
and 3C 273 (e.g. Jester et al. 2005). A
optical-IR wavelengths, emission from jets
is generally interpreted as an extension of
the synchrotron flux (e.g. Scarpa and Urry
2002; Sparks et al. 1994), while at shorter
wavelengths, more exotic radiative mecha-
nisms come into play (see (Sambruna et al.
2004) and references therein).

Here we present imaging of a newly-
discovered optical-IR jet in 3C 133 (0459+252)
from our Near-Infrared Camera and Imag-

ing Spectrometer (NICMOS) snapshot pro-
gram. The HST snapshot observing mode
allows a large number of targets to be effi-
ciently observed at irregular intervals that
fill the scheduling gaps between other ac-
cepted GO programs. We now have a large
body of data, obtained in this manner for
the low-redshift 3CR sources, that has led
to the serendipitous discovery of many of
the currently known optical jets, and that
now allows for multi-wavelength studies of
these jets and their host galaxies. How-

1See http://home.fnal.gov/ jester/optjets/ and ref-
erences therein
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ever we note that for detailed analysis of
the physical conditions, X-ray observations
which probe particles with even shorter ra-
diative lifetimes than the optical, are prov-
ing invaluable with the advent of XMM
and Chandra (Sambruna et al. 2004).

3C 133 is a classic example of a one-
sided FRII (Fanaroff and Riley 1974) radio
galaxy showing weaker Faraday depolarisa-
tion with increasing wavelength in the lobe
containing the jet (Laing 1988). However,
it has an unusual asymmetric radio mor-
phology, with a distinct ∼ 90◦ bend, and
large scale morphology that has been in-
terpreted as evidence for a rotating radio
axis (Robson 1981), and by Williams and
Gull (1985) as evidence for a flow deflected
by an oblique shock. This is the second
new jet to be discovered by this NICMOS
program, GO-10173 (see also 3C 401, Chi-
aberge et al. 2005), and brings to 30 the
total number of confirmed optical-IR jets.

We assume throughout a flat, Λ-dominated
cosmology, with H0 = 70 km s−1Mpc−1,
ΩM = 0.3. The optical counterpart of
3C 133 is at a redshift of z = 0.2775.
At this distance, 1′′corresponds to a linear
scale of 4.217 kpc. The projected length
of the radio jet is 15 kpc. The source
lies at low Galactic latitude (λ = −9◦.9)
and is thus heavily extinguished by our
own Galaxy (Galactic AB = 4.096 mag. –
Schlegel et al. 1998a).

2. Observations and Data Reduc-

tion

2.1. Optical-IR observations

Optical-IR observations are summarised
in Table 1. 3C 133 was observed as part
of our IR snapshot program (GO-10173) on

2004, December 13th, using NICMOS cam-
era 2 (NIC2) and the F160W filter, which
is centred at 1.6037 µm, and covers the
spectral range from 1.4 to 1.8 µm. In the
rest-frame of the source, the spectral range
of the filter (1.1-1.4 µm) admits the Paβ
line at 1.28216 µm, but is broad enough
that continuum emission dominates. The
field of view of NIC2 is 19′′.2× 19′′.2, with
a pixel size of 0′′.076 × 0′′.075. Total ex-
posure time is 1152 s, split into 4 images
of 288 s to allow for a 4-point dither pat-
tern with sub-pixel spacing, in order to im-
prove spatial resolution and eliminate de-
tector artefacts and cosmic rays from the
data. After dithering using the drizzle al-
gorithm of Fruchter and Hook (2002) with
a scale factor of 0.5, we produce the fi-
nal image presented in Fig. 1, rotated to
show north up, and with a projected pixel
size of 0′′.038 × 0′′.038. The HST world
coordinate system was corrected by com-
parison with the radio maps, using the
galaxy’s core as described below, to bring
it onto the international coordinate ref-
erence frame (ICRF). See Madrid et al.
(2005 in press) for further details of the
observations and data reduction.

In order to obtain a measurement of
the flux from the jet over as wide an energy
range as possible, we examined archival op-
tical data for the source. 3C 133 has been
included in two previous HST/WFPC2
snapshot programs (Table 1). The HST/WFPC2
data were reduced as described in de Koff
et al. (1996), and the sky background sub-
tracted using a sigma-clipping technique.
Note that the F702W observations were
not CR-SPLIT, and no attempt was made
at removing cosmic rays.

3



Fig. 1.— The NIC2 F160W image overlayed with 6 cm radio contours (0′′.35 FWHM). The
four main radio features are labelled A, B, C, D, following the convention of Robson (1981).
G1 and G2 indicate two nearby galaxies. Three distinct jet knots (E1, E2, E3) are observed
east of the nucleus at this wavelength (λr = 1.25 µm) – See Fig. 2 for close-up detail.

2.2. Radio observations

3C 133 has been the subject of sev-
eral VLA and MERLIN studies. We re-
analysed archival data in order to produce
four radio maps to compare to the IR data.
Radio observations are summarised in Ta-
ble 2. Each uv dataset was first calibrated
and imaged separately. The VLA 2 ob-
servations were reduced in the aips pack-
age using standard techniques of amplitude
and phase calibration, followed by imag-
ing, clean de-convolution and several it-
erations of self-calibration. The MER-

2The VLA is operated by the National Radio As-
tronomy Observatory. The National Radio As-
tronomy Observatory is a facility of the National
Science Foundation operated under cooperative
agreement by Associated universities, Inc.

LIN 3 data were also imaged and self-
calibrated in aips after initial calibration
as described in Robson (1981). The uv
datasets for each of the three frequency
bands were then concatenated, imaged and
self-calibrated in order to improve the spa-
tial coverage. The core varied by signif-
icant amounts between observations and
this effect was corrected by imaging the
individual datasets at the same resolution,
measuring the maxima and adding or sub-
tracting point sources as appropriate be-
fore concatenation. Final CLEAN images
were made at resolutions of 0′′.35 FWHM
(2, 6, and 18 cm) and 0′′.1 (2 cm only).

3MERLIN is a national facility operated by the
University of Manchester on behalf of PPARC in
the UK.
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Table 1

Journal of HST observations

Filter Camera t/s Obs. Date ID

f555w WFPC2/PC 300 1997 Sep 23 6967
f702w WFPC2/PC 300 1994 Mar 12 5476a

f160w NIC2 1152 2004 Dec 13 10173b

Note.—HST optical-IR observations, with HST pro-
posal ID’s and references where data is previously pub-
lished.

References. — a De Koff et al. (1996); b Madrid et al.
(2005).

Table 2

Journal of radio observations

ν/GHz ∆ν/GHz Config. t/min Date

14.9399 100 VLA A 12 1985 Feb 18
14.9649 50 VLA B 26 1982 Aug 06
14.9649 50 VLA C 26 1983 May 05
4.8851 50 VLA A 72 1982 Mar 02 a

1.6660 8 MERLIN 780 1980 Aug b

1.6649 50 VLA A 8 1982 Mar 02

Note.—Radio observations, with references where data
is previously published.

References. — a Laing (1988); b Robson (1981).
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Table 3

Parameters of radio images

ν/GHz Beam FWHM/arcsec Noise/mJy bm−1

14.9 0.1 0.06
14.9 0.35 0.50
4.9 0.35 0.07
1.7 0.35 0.39

Note.—Radio image beam size and noise.

Noise levels are given in Table 3.

3. Results

3.1. Discovery of a new jet

3C 133 is found to exhibit a prominent
NIR jet (Fig. 1). In addition to the host
galaxy, three distinct bright sources are
clearly visible (A, G1, G2) as well as a
number of fainter sources, and a line of
three faint “knots” comprising the jet, ex-
tending ∼ 1 − 2 arcsec east of the nucleus
along the axis of the radio source. de Koff
et al. (1996) noted the existence of faint
optical emission extending east, positing it
as an optical jet candidate.

We modelled the IR emission from
the central IR source using an isopho-
tal ellipse fit in iraf. Obvious exter-
nal sources, including the jet itself were
masked from the fit, as was the central
20 pixel (0′′.76) radius where the asymme-
tries of the instrumental PSF dominate the
flux. The ellipse model-subtracted residu-
als (Fig. 2) were convolved with a Gaussian
function and interpolated onto the grid of
the 2 cm map to match the beam size, res-

olution and astrometry of the radio data.
Similar modelling was performed for the 2
optical images. The residual images were
used to perform photometry on the jet it-
self (section 3.2 below).

The three IR knots clearly align with
three of the brightest (6 cm) radio features
in the jet, which we herein refer to as E1–
E3, moving from east to west towards the
nucleus. Furthermore, the eastern IR fea-
ture aligns with Robson’s (1981) compo-
nent A (Fig. 3), and the nucleus with com-
ponent C. To the south-east, component B
is faintly detected (4σ) in the IR at a po-
sition close to the peak of the radio flux
(Fig. 3). Faint, low-significance detections
are made in the F555W and F702W im-
ages at the same locations, although in the
F702W image, B is partially obscured by
a cosmic ray hit (as the observations were
not CR-SPLIT). We also detect a string of
faint (2–3σ) features on the western side,
up to 2′′.8 away from the nucleus, beyond
the PSF artefacts. This is in direct line
between the core (radio component C) and
radio component D, but no significant ra-
dio flux is detected on the counter-jet side

6



Fig. 2.— Close up of jet detail (left), with the nucleus masked in the ellipse model-subtracted
NIC2 F160W image (right) overlayed with 6 cm radio contours (0′′.35 FWHM). PSF artefacts
are visible close to the masked region, out to 0′′.76 radius.

at 6 or 18 cm.

3.2. Characterising the jet

Photometry was performed in five box-
shaped apertures on each image, corre-
sponding to the positions of knots E1, E2,
E3 and the jet hotspots A, B. The aper-
ture sizes and detected fluxes are reported
in Table 4. For each feature, identical
apertures were used at each wavelength.
In the optical-IR, the Gaussian-smoothed,
rebinned ellipse model-subtracted residual
images (discussed above) were used for the
photometry, and they match the beam size
and resolution of the 2 cm image. The
mean error on the ellipse fit flux at the ra-
dius of each feature was added in quadra-
ture to the Poisson noise of the feature it-
self, although this is a small contribution

to the noise for all except E3. For the two
lower frequency radio maps (6 &18 cm),
fluxes were measured at the lower 0′′.35 res-
olution. Aperture corrections were calcu-
lated for each feature by comparing to re-
sults obtained by applying the same aper-
tures to a tinytim (Krist 1999) realization
of a point source for the HST images, and a
Gaussian of the appropriate beam size for
the radio images. We note that hotspot
B exhibits a very different morphology in
the radio to the infrared (Fig. 3). A range
of aperture sizes were tested, and used to
compute the error on the flux from hotspot
B.

Galactic extinction was corrected for
following Schlegel et al. (1998b). There
may be an additional extinction contribu-
tion from the host galaxy itself, but this is

7



not computed here due to the poor SNR
on the host galaxy colour measurements.
Clearly any such contribution will affect
the innermost feature E3 at the shortest
wavelengths the most, and would likely
steepen the observed SED.

We used the NIR and 6 cm data to
determine the radio-IR spectral index, α
(Fν ∝ ν−α), of each of the five major fea-
tures (see Table 4). These spectral in-
dices are almost equal in E2, E3, and A
(α ≈ 0.9), with E1 and B having somewhat
steeper spectra (αE1 = 0.96 ± 0.03; αB =
1.17 ± 0.03). The spectral energy distri-
butions (SED’s) of the six components are
shown in Fig. 4.

3.3. The host galaxy and source G1

We modelled the IR source using the
technique described in Floyd et al. (2004)
to separate host from nuclear flux. The
host galaxy is found to be well fit by a
de Vaucouleurs profile with Re = 2 kpc
and a total unobscured H-band magni-
tude of 16.14. The unresolved nucleus has
H = 17.06, contributing roughly one third
of the total flux at this wavelength. The
optical host is harder to separate from the
nucleus, due to the lower SNR of the im-
ages. We determined an R-band host mag-
nitude of 18.6 ± 1.0, giving a colour of
R − H = 2.5 ± 1.0, consistent with that
of an old stellar population (R−H ≈ 2.3).

Although the western feature on the IR
image, G1, sits snugly alongside the exte-
rior contours of the western radio hotspot,
D, its colours are very red (R − H ≈

2.6 ± 0.5) and it is resolved in the IR. It
thus seems likely to be a small companion
or background elliptical galaxy with a ma-
ture stellar population.

Fig. 5.— SED for hotspot A, showing the
best linear fit to the data between 6 cm
and 0.7 µm (dotted line; log10(Fν/Jy) =
7.64 − 0.90 log10(ν/Hz)). This fit gives a
flux of 2.5×10−6 Jy at 0.55 µm, just within
the 3σ upper limit on the F555W datum.

4. Discussion

4.1. Synchrotron Jet

For all regions except A the knots are
consistent with synchrotron emission in
the optical with νpeak ∼ 1011 − 1015 Hz
in νFν . Component A itself has a spec-
trum consistent with a single power-law
(α = 0.90 ± 0.02; χ2 = 1.2 with 3 degrees
of freedom) between 6 cm and 0.7 µm,
although the spectrum appears to flatten
within the optical-IR band (Fig. 4). The
flux density predicted by this fit at 0.55 µm
is 2.5 × 10−6 Jy, just within the 3σ upper
limit. Synchrotron emission from a single
population is the most likely explanation
of the spectrum, but we note that if this is

8



Table 4

Jet SED

Src lAP Fν(7.18E14Hz) Fν (5.62E14Hz) Fν(2.38E14Hz) Fν(1.91E10Hz) Fν(6.38E9Hz) Fν(2.13E9Hz) α
radio−IR

Jy Jy Jy mJy mJy mJy

E1 0′′.3 < 3.03E − 8 < 1.36E − 7 3.12 ± 0.94E − 7 < 7.86 8.58 ± 1.7 6.30 ± 1.3 0.96 ± 0.03
E2 0′′.4 5.59 ± 2.8E − 8 < 3.63E − 7 4.43 ± 1.3E − 7 2.56 ± 1.3 2.62 ± 0.52 4.16 ± 0.83 0.87 ± 0.03
E3 0′′.4 9.12 ± 4.6E − 9 2.62 ± 1.3E − 8 4.08 ± 1.2E − 7 2.60 ± 0.78 4.04 ± 0.81 8.33 ± 1.7 0.88 ± 0.03
A 1′′.1 < 2.22E − 6 3.50 ± 1.7E − 6 4.84 ± 1.5E − 6 29.3 ± 8.8 69.8 ± 14.0 158. ± 32.0 0.91 ± 0.03
B 0′′.8 < 3.64E − 7 < 1.63E − 6 1.63 ± 0.32E − 7 25.2 ± 13.0 70.2 ± 35.0 169. ± 84.0 1.17 ± 0.13

Note.—Extinction-corrected optical, IR, and radio fluxes of the five synchrotron sources in 3C 133 at the rest-frame frequency, ν of the

observations. 3σ upper limits are given in the event of a non-detection. 6 cm–1.6 µm spectral indices (Fν ∝ ν−α) are given in the final column.
Apertures are square boxes with the length of one side presented in column 2.

the case then the SED turnover frequency
νpeak > 1015 Hz, is unusually high but
not unprecedented (Brunetti et al. 2003).
The hint of a flattening in the spectrum
at high frequencies, and the extreme value
of the turnover frequency suggest that a
second component may contribute to the
flux at high frequencies. This could be syn-
chrotron from a second population, or in-
verse Compton scattering of CMB photons
by very low-γ electrons (Georganopoulos
et al. 2005). In itself, it is unsurpris-
ing that the SED of A differs from that
of the knots in the jet; The X-ray emis-
sion from hotspots has been well studied
(e.g. Hardcastle et al. 2004; Brunetti et al.
2003; Hardcastle et al. 2002; Wilson et al.
2001) and always found to be quite hard.
However, it is impossible to distinguish be-
tween the different scenarios without high-
resolution ultraviolet or X-ray imaging.

We note the apparent decrease in the
turnover energy from E3 to E1, which ac-
companies the steepening radio-IR spectral
index. The peak energy drops with dis-
tance from the nucleus, and at E1 appears
to be extremely low. The optical-radio
spectral indices of the jet knots in 3C 133
are lower than those for the majority of the

jets studied by Sambruna et al. (2004). X-
ray observations of 3C 133 would therefore
allow us to study an undersampled part of
the α (radio – optical) – α (optical – X-
ray) plane and to distinguish between syn-
chrotron and beamed inverse Compton as
the primary X-ray emission mechanism.

4.2. Jet Orientation

We note that the jet is strongly one-
sided, implying that the eastern jet is
approaching and relativistically beamed.
The nuclear point source is luminous
(MH(Nuc) = −23.71) and almost quasar-
like, according to the definition of Véron-
Cetty and Véron 2003. This suggests that
we are seeing the source at an inclination
angle < 45◦, if we adopt the standard
model picture (Barthel 1989; Urry and
Padovani 1995; Jackson and Wall 1999).
3C 133 is known to exhibit an emission
line spectrum (Smith and Spinrad 1980)
with prominent [O iii] as well as Hβ emis-
sion. The presence of typically broad lines
that are seen in QSO’s would support a
picture of an object that is being observed
close to pole-on.

The jet has an apparent bend of ≈

70◦ at A, where the jet flow appears
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to be deflected, perhaps by an oblique
shock (Williams and Gull 1985), and ceases
to be a collimated jet-like structure. We
interpret this as a much smaller bend in a
jet that is oriented close to the line of sight.
In Fig. 6 we show the apparent bend angle
on the sky, ψ, for different values of true
bend angle, ψ′, and orientation angle, θ
(tanψ ∝ 1/ sin θ). We also plot the true
bend angle for the case at A, ψ = 70◦. This
shows that unless the true bend angle, ψ′

is > 60◦, the jet must be oriented closer to
the line of sight than (θ <

∼
40◦), confirming

and strengthening the suggestion above.
Finally, the rest-frame core-dominance ra-
tio at 2 cm, R = Pcore/Pext = 0.2 is in the
top tenth percentile of the distribution de-
rived by Hardcastle et al. (1999) and the
core flux is ≈ 17 times larger than the me-
dian value expected from the Giovannini
et al. (2001) correlation between total and
core power. This high core fraction is also
consistent with a small angle to the line of
sight.

5. Conclusions

The IR and faint optical flux to the east
of the nucleus appears to be synchrotron-
dominated radiation from the jet. There
is a slight steepening of the radio-IR spec-
tral index as we move outwards as observed
in, for example 3C 401 (Chiaberge et al.
2005), 3C 293 (Floyd et al. in press),
and 3C 273 (Jester et al. 2005). However,
high-resolution X-ray observations are re-
quired in order to properly diagnose the
dominant radiation mechanism, and phys-
ical conditions inside the jet. We propose
that hotspot A is at the working surface of
the jet, and is the location of a significant
bend, a likely site for in situ acceleration

(similar to the situation in 3C 351 Hardcas-
tle et al. 2002). The jet is aligned close to
the line of sight, and this deflection while
small in itself (perhaps ∼ 10◦) produces
the appearance of a 70◦ kink in the jet on
the plane of the sky.

We gratefully acknowledge support from
HST grant STGO-10173. EP acknowl-
edges support from NASA LTSA grants
NAG5-9997 and NNG05-GD63G. We also
thank the anonymous referee for construc-
tive comments and suggestions in the
preparation of this paper.
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Véron-Cetty, M.-P. and Véron, P.: 2003,
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Fig. 3.— The smoothed NICMOS2 F160W image showing knots A (left) and tentative, 4σ,
detection of B (right), overlayed with 2 cm radio contours (0′′.1 FWHM).
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Fig. 4.— SED’s for the 3 jet components (E1, E2, E3) and the hotspots (A, B). All except
A are consistent with a synchrotron spectrum with a turnover at ∼ 1013 Hz. See Table 4
and discussion.
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Fig. 6.— True (ψ′) and apparent (ψ) bend angles, based on orientation angle, θ.
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