18 research outputs found

    Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury

    Get PDF
    BACKGROUND: NF-κB binds to the κB motif to regulate transcription of genes involved in growth, immunity and inflammation, and plays a pivotal role in the production of pro-inflammatory cytokines after nerve injuries. The zinc finger protein ZAS3 also binds to the κB or similar motif. In addition to competition for common DNA sites, in vitro experiments have shown that ZAS3 can inhibit NF-κB via the association with TRAF2 to inhibit the nuclear translocation of NF-κB. However, the physiological significance of the ZAS3-mediated inhibition of NF-κB has not been demonstrated. The purpose of this study is to characterize ZAS3 proteins in nervous tissues and to use spinal nerve ligation, a neuropathic pain model, to demonstrate a functional relationship between ZAS3 and NF-κB. RESULTS: Immunohistochemical experiments show that ZAS3 is expressed in specific regions of the central and peripheral nervous system. Abundant ZAS3 expression is found in the trigeminal ganglion, hippocampal formation, dorsal root ganglia, and motoneurons. Low levels of ZAS3 expressions are also found in the cerebral cortex and in the grey matter of the spinal cord. In those nervous tissues, ZAS3 is expressed mainly in the cell bodies of neurons and astrocytes. Together with results of Western blot analyses, the data suggest that ZAS3 protein isoforms with differential cellular distribution are produced in a cell-specific manner. Further, neuropathic pain confirmed by persistent mechanical allodynia was manifested in rats seven days after L5 and L6 lumbar spinal nerve ligation. Changes in gene expression, including a decrease in ZAS3 and an increase in the p65 subunit of NF-κB were observed in dorsal root ganglion ipsilateral to the ligation when compared to the contralateral side. CONCLUSION: ZAS3 is expressed in nervous tissues involved in cognitive function and pain modulation. The down-regulation of ZAS3 after peripheral nerve injury may lead to activation of NF-κB, allowing Wallerian regeneration and induction of NF-κB-dependent gene expression, including pro-inflammatory cytokines. We propose that reciprocal changes in the expression of ZAS3 and NF-κB might generate neuropathic pain after peripheral nerve injury

    The Large Zinc Finger Protein ZAS3 Is a Critical Modulator of Osteoclastogenesis

    Get PDF
    Mice deficient in the large zinc finger protein, ZAS3, show postnatal increase in bone mass suggesting that ZAS3 is critical in the regulation of bone homeostasis. Although ZAS3 has been shown to inhibit osteoblast differentiation, its role on osteoclastogenesis has not been determined. In this report we demonstrated the role of ZAS3 in bone resorption by examining the signaling mechanisms involved in osteoclastogenesis.Comparison of adult wild-type and ZAS3 knockout (ZAS3-/-) mice showed that ZAS3 deficiency led to thicker bones that are more resistant to mechanical fracture. Additionally, ZAS3-/- bones showed fewer osteoclasts and inefficient M-CSF/sRANKL-mediated osteoclastogenesis ex vivo. Utilizing RAW 264.7 pre-osteoclasts, we demonstrated that overexpression of ZAS3 promoted osteoclastogenesis and the expression of crucial osteoclastic molecules, including phospho-p38, c-Jun, NFATc1, TRAP and CTSK. Contrarily, ZAS3 silencing by siRNA inhibited osteoclastogenesis. Co-immunoprecipitation experiments demonstrated that ZAS3 associated with TRAF6, the major receptor associated molecule in RANK signaling. Furthermore, EMSA suggested that nuclear ZAS3 could regulate transcription by binding to gene regulatory elements.Collectively, the data suggested a novel role of ZAS3 as a positive regulator of osteoclast differentiation. ZAS3 deficiency caused increased bone mass, at least in part due to decreased osteoclast formation and bone resorption. These functions of ZAS3 were mediated via activation of multiple intracellular targets. In the cytoplasmic compartment, ZAS3 associated with TRAF6 to control NF-kB and MAP kinase signaling cascades. Nuclear ZAS3 acted as a transcriptional regulator for osteoclast-associated genes. Additionally, ZAS3 activated NFATc1 required for the integration of RANK signaling in the terminal differentiation of osteoclasts. Thus, ZAS3 was a crucial molecule in osteoclast differentiation, which might potentially serve as a target in the design of therapeutic interventions for the treatment of bone diseases related to increased osteoclast activity such as postmenopausal osteoporosis, Paget's disease, and rheumatoid arthritis

    Earthquake Geotechnical Engineering Aspects of the 2012 Emilia-Romagna Earthquake (Italy)

    Get PDF
    On May 20, 2012 an earthquake of magnitude ML=5.9 struck the Emilia Romagna Region of Italy and a little portion of Lombardia Region. Successive earthquakes occurred on May 29, 2012 with ML=5.8 and ML=5.3. The earthquakes caused 27 deaths, of which 13 on industrial buildings. The damage was considerable. 12,000 buildings were severely damaged; big damages occurred also to monuments and cultural heritage of Italy, causing the collapse of 147 campaniles. The damage is estimated in about 5-6 billions of euro. To the damage caused to people and buildings, must be summed the indirect damage due to loss of industrial production and to the impossibility to operate for several months. The indirect damage could be bigger than the direct damage caused by the earthquake. The resilience of the damaged cities to the damage to the industrial buildings and the lifelines was good enough, because some industries built a smart campus to start again to operate in less of one month and structural and geotechnical guidelines were edited to start with the recovering the damage industrial buildings. In the paper a damage survey is presented and linked with the ground effects. Among these, soil amplification and liquefaction phenomena are analyzed, basing on the soil properties evaluation by field and laboratory tests. Particular emphasis is devoted to the damaged suffered by the industrial buildings and to the aspects of the remedial work linked with the shallow foundation inadequacy and to the liquefaction mitigation effects

    Earthquake Geotechnical Engineering aspects: the 2012 Emilia-Romagna earthquake (Italy)

    Get PDF
    On May 20, 2012 an earthquake of magnitude ML=5.9 struck the Emilia Romagna Region of Italy and a little portion of Lombardia Region. Successive earthquakes occurred on May 29, 2012 with ML=5.8 and ML=5.3. The earthquakes caused 27 deaths, of which 13 on industrial buildings. The damage was considerable. 12,000 buildings were severely damaged; big damages occurred also to monuments and cultural heritage of Italy, causing the collapse of 147 campaniles. The damage is estimated in about 5-6 billions of euro. To the damage caused to people and buildings, must be summed the indirect damage due to loss of industrial production and to the impossibility to operate for several months. The indirect damage could be bigger than the direct damage caused by the earthquake. The resilience of the damaged cities to the damage to the industrial buildings and the lifelines was good enough, because some industries built a smart campus to start again to operate in less of one month and structural and geotechnical guidelines were edited to start with the recovering the damage industrial buildings. In the paper a damage survey is presented and linked with the ground effects. Among these, soil amplification and liquefaction phenomena are analyzed, basing on the soil properties evaluation by field and laboratory tests. Particular emphasis is devoted to the damaged suffered by the industrial buildings and to the aspects of the remedial work linked with the shallow foundation inadequacy and to the liquefaction mitigation effects

    Expression and subcellular localization of ZAS3 associate with osteoclastogenesis of RAW 264.7 preosteoclasts.

    No full text
    <p>(A) Morphological changes and increase in TRAP expression of RAW264.7 cells upon sRANKL-mediated osteoclastogenesis. RAW 264.7 cells were cultured for 0, 2, 4 or 6 days and stained for TRAP. Scale bar, 50 µm and arrows show representative TRAP+ cells. (B) Western blot analysis to show the presence of ZAS3 in RAW 264.7 cells at days 0, 2, 4 and 6 incubated with sRANKL (50 ng/ml). The protein filter was also incubated with histone H1 antibodies as a loading control. (C) Immunohistochemical fluorescence microscopy showing the expression of ZAS3 in RAW 264.7 cells at various stages of osteoclast differentiation. Number shown was the number of nucleus or nuclei presence in the cell indicated. During osteoclastogenesis, multinucleated giant cells are progressively formed by cell fusion. Therefore, increasing number of nuclei represented cells were at more advanced stage of osteoclastogenesis.</p

    ZAS3 is essential for RANKL-mediated osteoclastogenesis of bone marrow precursors.

    No full text
    <p>(A) Western blot analysis of total protein lysates prepared from bone marrow macrophages (BMM) cultured without (−) or with (+) sRANKL (50 ng/ml) for 3 days. Bone marrow aspirates isolated from WT mice were cultured in complete medium with M-CSF (50 ng/ml) for 3 days, and non-adherent cells were harvested and further cultured with M-CSF (50 ng/ml) and sRANKL (50 ng/ml) for 3 days. (B) Immunohistochemical analysis of ZAS3 (red) in bone marrow macrophages (BMM) cultured with M-CSF and sRANKL (50 ng/ml each) at an early phase of osteoclastogenesis. White arrow indicates a mononucleated cell in which ZAS3 shows prominently nuclear localization. Yellow arrow highlights the membrane proximity of ZAS3 in a cell that contained two nuclei and therefore, had undergone the first cell fusion. Nuclei were stained with DAPI (blue). (C) TRAP staining of BMM cultured in the presence of M-CSF and sRANKL (50 ng/ml each). More TRAP+ (cells stained red) and OLC were observed from <i>ZAS3+/+</i> than <i>ZAS3−/−</i> BMM at day 4 (upper panels) and day 6 (lower panel). At day 6, most <i>ZAS3+/+</i> BMM had differentiated into large multinucleated TRAP positive cells while <i>ZAS3−/−</i> BMM was inefficient to do so and failed to form large spreading TRAP+ OLC. Scale bar, 100 µm. Data were representatives of 1 out of 3 independent experiments. (D) Bar charts showing the number of TRAP+ multinucleated OLC (more than 3 nuclei) formed in response to sRANKL and M-CSF stimulation (initially plated 5000 cells per well of an 8 well slide). Data were expressed as the mean ± SD from 3 independent experiments. (E) Western blot analysis of protein lysates of BMM cultured with M-CSF and sRANKL for 6 days with indicated antibodies. +/+ <i>ZAS3</i> WT mice, −/− <i>ZAS3</i> KO mice, and +/− heterozygous ZAS3 mice.</p
    corecore