3 research outputs found

    Modulation of macrophages differentiation by nanoscale-engineered geometric and chemical features

    Get PDF
    Macrophage differentiation into M1 (inflammatory) and M2 (healing) phenotypes plays a vital role in determining the fate of biomaterials. The biophysical properties of the extracellular matrix are known to affect macrophage behavior. Mimicking these special biophysical properties of the extracellular matrix has led to increasing interest in biomaterial constructs with tailor-engineered surface nanotopographical and chemical properties. However, a significant gap of knowledge exists in the role played by the combinational effect of surface nanotopography and chemistry. To address this gap, we have fabricated nanoporous surfaces of controlled pore size (30, 65, and 200 nm) and lateral spacing with uniform outermost surface chemistry tailored with amines (NH2), carboxyl (COOH−) and hydrocarbon (CH3−) functionalities. We show that the combinatory effects of surface properties can direct the differentiation of macrophages to the pro-healing M2 phenotype. This is most evident on the surface featuring nanopores of 200 nm and −COOH functionality. Overall, the concentration of pro-inflammatory cytokines significantly decreases, while the concentration of anti-inflammatory cytokines increases many folds on nanotopographically, and chemically, modified surfaces compared to their planar counterparts. Our data provide pioneering knowledge that could provide pathways to tuning inflammatory and foreign body responses and instruct the design of tailor-engineered biomaterial implants to enable better clinical outcomes.A. Bachhuka, R. Madathiparambil Visalakshan, C. S. Law, A. Santos, H. Ebendorff-Heidepriem, S. Karnati, and K. Vasile

    Synergistic Effect of Surface Chemistry and Surface Topography Gradient on Osteogenic/Adipogenic Differentiation of hMSCs

    No full text
    Much attention has been paid to understanding the individual effects of surface chemistry or topography on cell behavior. However, the synergistic influence of both surface chemistry and surface topography on differentiation of human mesenchymal stem cells (hMSCs) should also be addressed. Here, gold nanoparticles were immobilized in an increasing number density manner to achieve a surface topography gradient; a thin film rich in amine (-NH2) or methyl (-CH3) chemical groups was plasma-polymerized to adjust the surface chemistry of the outermost layer (ppAA and ppOD, respectively). hMSCs were cultured on these model substrates with defined surface chemistry and surface topography gradient. The morphology and focal adhesion (FA) formation of hMSCs were first examined. hMSC differentiation was then co-induced in osteogenic and adipogenic medium, as well as in the presence of extracellular-signal-regulated kinase1/2 (ERK1/2) and RhoA/Rho-associated protein kinase (ROCK) inhibitors. The results show that the introduction of nanotopography could enhance FA formation and osteogenesis but inhibited adipogenesis on both ppAA and ppOD surfaces, indicating that the surface chemistry could regulate hMSC differentiation, in a surface topography-dependent manner. RhoA/ROCK and ERK1/2 signaling pathways may participate in this process. This study demonstrated that surface chemistry and surface topography can jointly affect cell morphology, FA formation, and thus osteogenic/adipogenic differentiation of hMSCs. These findings highlight the importance of the synergistic effect of different material properties on regulation of cell response, which has important implications in designing functional biomaterials.Xujie Liu, Yakun Wang, Yan He, Xiaofeng Wang, Ranran Zhang, Akash Bachhuka, Rahul Madathiparambil Visalakshan, Qingling Feng, and Krasimir Vasile

    The protein corona and its effects on nanoparticle-based drug delivery systems

    No full text
    corecore