17 research outputs found
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
J/ψ polarization in p+p collisions at s=200 GeV in STAR
AbstractWe report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2<pT<6 GeV/c in p+p collisions at s=200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT, indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models
Dielectron Azimuthal Anisotropy At Mid-rapidity In Au+au Collisions At Snn =200 Gev
We report on the first measurement of the azimuthal anisotropy (v2) of dielectrons (e+e- pairs) at mid-rapidity from sNN=200 GeV Au+Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Mee<1.1 GeV/c2 the dielectron v2 measurements are found to be consistent with expectations from π0,η,ω, and φ decay contributions. In the mass region 1.1<Mee<2.9GeV/c2, the measured dielectron v2 is consistent, within experimental uncertainties, with that from the cc¯ contributions.906Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , NUPABL 0375-9474Arsene, I., (2005) Nucl. Phys. A, 757, p. 1. , NUPABL 0375-9474Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , NUPABL 0375-9474Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , NUPABL 0375-9474Rapp, R., Wambach, J., (2002) Adv. Nucl. Phys., 25, p. 1. , 0065-2970David, G., Rapp, R., Xu, Z., (2008) Phys. Rep., 462, p. 176. , PRPLCM 0370-1573Agakichiev, G., (2005) Eur. Phys. J. C, 41, p. 475. , EPCFFB 1434-6044Arnaldi, R., (2006) Phys. Rev. Lett., 96, p. 162302. , PRLTAO 0031-9007Brown, G.E., Rho, M., (1996) Phys. Rep., 269, p. 333. , PRPLCM 0370-1573Rapp, R., Wambach, J., (1999) Eur. Phys. J. A, 6, p. 415. , EPJAFV 1434-6001Dusling, K., Teaney, D., Zahed, I., (2007) Phys. Rev. C, 75, p. 024908. , PRVCAN 0556-2813Van Hees, H., Rapp, R., (2008) Nucl. Phys. A, 806, p. 339. , NUPABL 0375-9474Renk, T., Ruppert, J., (2008) Phys. Rev. C, 77, p. 024907. , PRVCAN 0556-2813Adare, A., (2010) Phys. Rev. C, 81, p. 034911. , PRVCAN 0556-2813Adamczyk, L., (2014) Phys. Rev. Lett., 113, p. 022301. , a longer version (unpublished). PRLTAO 0031-9007Rapp, R., Wambach, J., Van Hees, H., (2010) Relativistic Heavy-Ion Physics, , in, edited by R. Stock, Landolt Börnstein New Series I/23A (Springer, Berlin), Chap. 4-1Linnyk, O., Cassing, W., Manninen, J., Bratkovskaya, E.L., Ko, C.M., (2012) Phys. Rev. C, 85, p. 024910. , PRVCAN 0556-2813Xu, J.-H., Chen, H.F., Dong, X., Wang, Q., Zhang, Y.F., (2012) Phys. Rev. C, 85, p. 024906. , PRVCAN 0556-2813Adare, A., (2010) Phys. Rev. Lett., 104, p. 132301. , PRLTAO 0031-9007Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813Adare, A., (2012) Phys. Rev. Lett., 109, p. 122302. , PRLTAO 0031-9007Van Hees, H., Gale, C., Rapp, R., (2011) Phys. Rev. C, 84, p. 054906. , PRVCAN 0556-2813Chatterjee, R., Srivastava, D.K., Heinz, U., Gale, C., (2007) Phys. Rev. C, 75, p. 054909. , PRVCAN 0556-2813Adare, A., (2009) Phys. Lett. B, 670, p. 313. , PYLBAJ 0370-2693Bonner, B., (2003) Nucl. Instrum. Methods A, 508, p. 181. , NIMAER 0168-9002Shao, M., (2002) Nucl. Instrum. Methods A, 492, p. 344Wu, J., (2005) Nucl. Instrum. Methods A, 538, p. 243. , NIMAER 0168-9002Landgraf, J.M., (2003) Nucl. Instrum. Methods A, 499, p. 762. , NIMAER 0168-9002Ackermann, K.H., (2003) Nucl. Instrum. Methods A, 499, p. 624. , NIMAER 0168-9002Anderson, M., (2003) Nucl. Instrum. Methods A, 499, p. 659. , NIMAER 0168-9002Bichsel, H., (2006) Nucl. Instrum. Methods A, 562, p. 154. , NIMAER 0168-9002Xu, Y., (2010) Nucl. Instrum. Methods A, 614, p. 28. , NIMAER 0168-9002Shao, M., (2006) Nucl. Instrum. Methods A, 558, p. 419. , NIMAER 0168-9002Adams, J., (2005) Phys. Lett. B, 616, p. 8. , PYLBAJ 0370-2693Ruan, L., Ph.D. thesis, University of Science and Technology of China, 2005, arXiv:nucl-ex/0503018 (unpublished)Llope, W.J., (2004) Nucl. Instrum. Methods A, 522, p. 252. , NIMAER 0168-9002Adler, C., (2002) Phys. Rev. Lett., 89, p. 202301. , PRLTAO 0031-9007Adams, J., (2005) Phys. Rev. Lett., 94, p. 062301. , PRLTAO 0031-9007Adamczyk, L., (2012) Phys. Rev. C, 86, p. 024906. , PRVCAN 0556-2813Zhao, J., (2013), https://drupal.star.bnl.gov/STAR/theses/phd-32, Ph.D. thesis, Shanghai Institute of Applied Physics, (unpublished)Voloshin, S.A., Poskanzer, A.M., Snellings, R., (2010) Relativistic Heavy Ion Physics, pp. 5-54. , in, Landolt-Börnstein Vol. 1/23 (Springer-Verlag, Berlin), ppAdamczyk, L., (2013) Phys. Rev. C, 88, p. 014902. , PRVCAN 0556-2813Abelev, B.I., (2008) Phys. Rev. C, 77, p. 054901. , PRVCAN 0556-2813Abelev, B.I., (2006) Phys. Rev. Lett., 97, p. 152301. , PRLTAO 0031-9007Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , PRVCAN 0556-2813Abelev, B.I., (2009) Phys. Rev. C, 79, p. 064903. , PRVCAN 0556-2813Adams, J., (2005) Phys. Lett. B, 612, p. 181. , PYLBAJ 0370-2693Adler, S.S., (2007) Phys. Rev. C, 75, p. 024909. , PRVCAN 0556-2813Tang, Z., Xu, Y., Ruan, L., Van Buren, G., Wang, F., Xu, Z., (2009) Phys. Rev. C, 79, p. 051901. , (R) () PRVCAN 0556-2813Shao, M., Yi, L., Tang, Z., Chen, H., Li, C., Xu, Z., (2010) J. Phys. G, 37, p. 085104. , JPGPED 0954-3899Afanasiev, S., (2009) Phys. Rev. C, 80, p. 054907. , PRVCAN 0556-2813Adams, J., (2005) Phys. Rev. C, 72, p. 014904. , PRVCAN 0556-2813Abelev, B.I., (2007) Phys. Rev. Lett., 99, p. 112301. , PRLTAO 0031-9007Kroll, N.M., Wada, W., (1955) Phys. Rev., 98, p. 1355. , PHRVAO 0031-899XRuan, L., (2011) Nucl. Phys. A, 855, p. 269. , NUPABL 0375-9474Huang, B., (2011), Ph.D. thesis, University of Science and Technology of China, (unpublished)Sjöstrand, T., (2001) Comput. Phys. Commun., 135, p. 238. , CPHCBZ 0010-4655Adamczyk, L., (2012) Phys. Rev. D, 86, p. 072013. , PRVDAQ 1550-7998Agakishiev, H., (2011) Phys. Rev. D, 83, p. 052006. , PRVDAQ 1550-7998Adare, A., (2011) Phys. Rev. C, 84, p. 044905. , PRVCAN 0556-2813Adare, A., (2012) Phys. Rev. C, 85, p. 064914. , PRVCAN 0556-2813Adare, A., (2007) Phys. Rev. Lett., 98, p. 162301. , PRLTAO 0031-9007Adams, J., (2004) Phys. Rev. Lett., 92, p. 052302. , PRLTAO 0031-9007Vujanovic, G., Young, C., Schenke, B., Jeon, S., Rapp, R., Gale, C., (2013) Nucl. Phys. A, 904-905, p. 557c. , NUPABL 0375-9474Vujanovic, G., Young, C., Schenke, B., Jeon, S., Rapp, R., Gale, C., (2014) Phys. Rev. C, 89, p. 034904. , PRVCAN 0556-281
Beam-energy Dependence Of Charge Separation Along The Magnetic Field In Au+au Collisions At Rhic
Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies. © 2014 American Physical Society.1135DOE; National Research Foundation; CNRS/IN2P3; NSF; National Research Foundation; NRF-2012004024; National Research FoundationVafa, C., Witten, E., (1984) Phys. Rev. Lett., 53, p. 535. , PRLTAO 0031-9007 10.1103/PhysRevLett.53.535Lee, D.T., (1973) Phys. Rev. D, 8, p. 1226. , PRVDAQ 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9, p. 2291. , PRVDAQ 0556-2821 10.1103/PhysRevD.9.2291Kharzeev, D.E., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys., A803, p. 227. , NUPBBO 0375-9474 10.1016/j.nuclphysa.2008.02.298Kharzeev, D., (2006) Phys. Lett. B, 633, p. 260. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.11.075Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys., A797, p. 67. , NUPBBO 0375-9474 10.1016/j.nuclphysa.2007.10.001Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78, p. 074033. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.074033Kharzeev, E.D., (2010) Ann. Phys. (Amsterdam), 325, p. 205. , APNYA6 0003-4916 10.1016/j.aop.2009.11.002Gatto, R., Ruggieri, M., (2012) Phys. Rev. D, 85, p. 054013. , PRVDAQ 1550-7998 10.1103/PhysRevD.85.054013Abelev, B.I., (2009) Phys. Rev. Lett., 103, p. 251601. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.103.251601Abelev, B.I., (2010) Phys. Rev. C, 81, p. 054908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.81.054908Adamczyk, L., (2013) Phys. Rev. C, 88, p. 064911. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.88.064911Adamczyk, L., (2014) Phys. Rev. C, 89, p. 044908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.89.044908Ajitanand, N.N., Esumi, S., Lacey, R.A., Proceedings of the RBRC Workshops, 2010, 96. , http://www.bnl.gov/isd/documents/74466.pdf, (PHENIX Collaboration), in, Vol.Ajitanand, N.N., Lacey, R.A., Taranenko, A., Alexander, J.M., (2011) Phys. Rev. C, 83, p. 011901. , PRVCAN 0556-2813 10.1103/PhysRevC.83.011901Abelev, B.I., (2013) Phys. Rev. Lett., 110, p. 012301. , (ALICE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.012301Bzdak, A., Koch, V., Liao, J., (2010) Phys. Rev. C, 81, p. 031901. , PRVCAN 0556-2813 10.1103/PhysRevC.81.031901Liao, J., Koch, V., Bzdak, A., (2010) Phys. Rev. C, 82, p. 054902. , PRVCAN 0556-2813 10.1103/PhysRevC.82.054902Kharzeev, D.E., Son, D.T., (2011) Phys. Rev. Lett., 106, p. 062301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.062301Voloshin, A.S., (2004) Phys. Rev. C, 70, p. 057901. , PRVCAN 0556-2813 10.1103/PhysRevC.70.057901Anderson, M., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 499, p. 659. , NIMAER 0168-9002 10.1016/S0168-9002(02)01964-2Adams, J., (2005) Phys. Rev. C, 72, p. 014904. , (STAR Collaboration), ()PRVCAN 0556-2813 10.1103/PhysRevC.72.014904Agakishiev, G., (2012) Phys. Rev. C, 86, p. 014904. , (STAR Collaboration), ()PRVCAN 0556-2813 10.1103/PhysRevC.86.014904Adamczyk, L., (2012) Phys. Rev. C, 86, p. 054908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.86.054908Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Barrette, J., (1997) Phys. Rev. C, 56, p. 3254. , PRVCAN 0556-2813 10.1103/PhysRevC.56.3254Ollitrault, J.-Y., Poskanzer, A.M., Voloshin, S.A., (2009) Phys. Rev. C, 80, p. 014904. , PRVCAN 0556-2813 10.1103/PhysRevC.80.014904Abelev, B.I., (2008) Phys. Rev. Lett., 101, p. 252301. , (STAR Collaboration), () and references therein. PRLTAO 0031-9007 10.1103/PhysRevLett.101.252301Bzdak, A., Koch, V., Liao, J., (2011) Phys. Rev. C, 83, p. 014905. , PRVCAN 0556-2813 10.1103/PhysRevC.83.014905Ray, R.L., Longacre, R.S., arXiv:nucl-ex/0008009;Ray, R.L., Longacre, R.S., (private communication)Bass, S.A., (1998) Prog. Part. Nucl. Phys., 41, p. 255. , PPNPDB 0146-6410 10.1016/S0146-6410(98)00058-1Bleicher, M., (1999) J. Phys. G, 25, p. 1859. , JPGPED 0954-3899 10.1088/0954-3899/25/9/308Ma, G.-L., Zhang, B., (2011) Phys. Lett. B, 700, p. 39. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.04.057Okorokov, A.V., (2013) Int. J. Mod. Phys. e, 22, p. 1350041. , IMPEER 0218-3013 10.1142/S0218301313500419Bzdak, A., Koch, V., Liao, J., (2013) Lect. Notes Phys., 871, p. 503. , LNPHA4 0075-8450 10.1007/978-3-642-37305-
Fluctuations Of Charge Separation Perpendicular To The Event Plane And Local Parity Violation In S Nn = 200 Gev Au + Au Collisions At The Bnl Relativistic Heavy Ion Collider
Previous experimental results based on data (∼15×106 events) collected by the STAR detector at the BNL Relativistic Heavy Ion Collider suggest event-by-event charge-separation fluctuations perpendicular to the event plane in noncentral heavy-ion collisions. Here we present the correlator previously used split into its two component parts to reveal correlations parallel and perpendicular to the event plane. The results are from a high-statistics 200-GeV Au + Au collisions data set (57×106 events) collected by the STAR experiment. We explicitly count units of charge separation from which we find clear evidence for more charge-separation fluctuations perpendicular than parallel to the event plane. We also employ a modified correlator to study the possible P-even background in same- and opposite-charge correlations, and find that the P-even background may largely be explained by momentum conservation and collective motion. © 2013 American Physical Society.886NRF-2012004024; National Research FoundationLee, T.D., Yang, C.N., (1956) Phys. Rev., 104. , 1, 254. 0031-899X PHRVAO 10.1103/PhysRev.104.254Vafa, C., Witten, E., (1984) Phys. Rev. Lett., 53. , 2, 535. 0031-9007 PRLTAO 10.1103/PhysRevLett.53.535Lee, T.D., (1973) Phys. Rev. D, 8. , 3, 1226. 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9. , 4, 2291. 0556-2821 10.1103/PhysRevD.9.2291Kharzeev, D., Parity violation in hot QCD: Why it can happen, and how to look for it (2006) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 633 (2-3), pp. 260-264. , DOI 10.1016/j.physletb.2005.11.075, PII S0370269305017430Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys. A, 797. , 6, 67. 0375-9474 NUPABL 10.1016/j.nuclphysa.2007.10.001Kharzeev, D., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys. A, 803. , 7, 227. 0375-9474 NUPABL 10.1016/j.nuclphysa.2008.02.298Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78. , 8, 074033. 1550-7998 PRVDAQ 10.1103/PhysRevD.78.074033Abelev, B.I., (2009) Phys. Rev. Lett., 103. , 9 (STAR Collaboration), 251601. 0031-9007 PRLTAO 10.1103/PhysRevLett.103. 251601Abelev, B.I., (2010) Phys. Rev. C, 81. , 10 (STAR Collaboration), 054908. 0556-2813 PRVCAN 10.1103/PhysRevC.81. 054908Abelev, B.I., (2013) Phys. Rev. Lett., 110. , 11 (ALICE Collaboration), 012301. 0031-9007 PRLTAO 10.1103/PhysRevLett. 110.012301Ackermann, K.H., Adams, N., Adler, C., Ahammed, Z., Ahmad, S., Allgower, C., Amonett, J., Harris, J.W., STAR detector overview (2003) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499 (2-3), pp. 624-632. , DOI 10.1016/S0168-9002(02)01960-5Adams, J., Aggarwal, M.M., Ahammed, Z., Amonett, J., Anderson, B.D., Arkhipkin, D., Averichev, G.S., Bai, Y., Directed flow in Au+Au collisions at sNN=62.4 GeV (2006) Physical Review C - Nuclear Physics, 73 (3), pp. 1-7. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevC.73.034903&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevC.73.034903, 034903Adamczyk, L., (2012) Phys. Rev. Lett., 108. , 14 (STAR Collaboration), 202301. 0031-9007 PRLTAO 10.1103/PhysRevLett. 108.202301Voloshin, S.A., Parity violation in hot QCD: How to detect it (2004) Physical Review C - Nuclear Physics, 70 (5), pp. 0579011-0579012. , DOI 10.1103/PhysRevC.70.057901, 057901Poskanzer, A.M., Voloshin, S.A., Methods for analyzing anisotropic flow in relativistic nuclear collisions (1998) Physical Review C - Nuclear Physics, 58 (3), pp. 1671-1678. , DOI 10.1103/PhysRevC.58.1671Ollitrault, J.-Y., Poskanzer, A.M., Voloshin, S.A., (2009) Phys. Rev. C, 80. , 17, 014904. 0556-2813 PRVCAN 10.1103/PhysRevC.80.014904Pratt, S., Schlichting, S., Gavin, S., (2011) Phys. Rev. C, 84. , 18, 024909. 0556-2813 PRVCAN 10.1103/PhysRevC.84.024909Schlichting, S., Pratt, S., (2011) Phys. Rev. C, 83. , 19, 014913. 0556-2813 PRVCAN 10.1103/PhysRevC.83.014913Selyuzhenkov, I., Voloshin, S., (2008) Phys. Rev. C, 77. , 20, 034904. 0556-2813 PRVCAN 10.1103/PhysRevC.77.034904Kisiel, A., (2006) Comput. Phys. Commun., 174. , 21, 669. 0010-4655 CPHCBZ 10.1016/j.cpc.2005.11.010Bzdak, A., Koch, V., Liao, J., (2011) Phys. Rev. C, 83. , 22, 014905. 0556-2813 PRVCAN 10.1103/PhysRevC.83.014905Adams, J., Aggarwal, M.M., Ahammed, Z., Amonett, J., Anderson, B.D., Arkhipkin, D., Averichev, G.S., Grebenyuk, O., Azimuthal anisotropy in Au+Au collisions at sNN=200GeV (2005) Physical Review C - Nuclear Physics, 72 (1), pp. 1-23. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRC:72, DOI 10.1103/PhysRevC.72.014904, 014904Ray, R.L., Longacre, R.S., 24, arXiv:nucl-ex/0008009 and private communicationKopylov, G.I., Podgoretsky, M.I., Kopylov, G.I., Podgoretsky, M.I., (1972) Sov. J. Nucl. Phys., 15. , 25a, 219 ()25b, Phys. Lett. B. 50, 472 (1974) 0370-2693 PYLBAJ 10.1016/0370-2693(74)90263-925c, Sov. J. Part. Nucl. 20, 266 (1989)Goldhaber, G., Goldhaber, S., Lee, W., Pais, A., (1960) Phys. Rev., 120. , 26, 325. 0031-899X PHRVAO 10.1103/PhysRev.120.32
Measurement Of Charge Multiplicity Asymmetry Correlations In High-energy Nucleus-nucleus Collisions At Snn =200 Gev
A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at sNN=200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, Δ, between the like- and unlike-sign up/down-left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic v2obs), where Δ=[1.3±1.4(stat)-1.0+4.0(syst)]×10- 5+[3.2±0.2(stat)-0.3+0.4(syst)]×10-3v2obs for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed. © 2014 American Physical Society.894NRF-2012004024; National Research FoundationArsene, I., (2005) Nucl. Phys. A, 757, p. 1. , (BRAHMS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.02.130Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , (PHOBOS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.084Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.085Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , (PHENIX Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.086Lee, T.D., (1973) Phys. Rev. D, 8, p. 1226. , 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9, p. 2291. , 0556-2821 10.1103/PhysRevD.9.2291Morley, P.D., Schmidt, I.A., (1985) Z. Phys. C, 26, p. 627. , ZPCFD2 0170-9739 10.1007/BF01551807Kharzeev, D., Pisarski, R.D., Tytgat, M.H.G., (1998) Phys. Rev. Lett., 81, p. 512. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.512Kharzeev, D., (2006) Phys. Lett. B, 633, p. 260. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.11.075Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys. A, 797, p. 67. , NUPABL 0375-9474 10.1016/j.nuclphysa.2007.10.001Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78, p. 074033. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.074033Kharzeev, D.E., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys. A, 803, p. 227. , NUPABL 0375-9474 10.1016/j.nuclphysa.2008.02.298Voloshin, S.A., (2004) Phys. Rev. C, 70, p. 057901. , PRVCAN 0556-2813 10.1103/PhysRevC.70.057901Abelev, B.I., (2009) Phys. Rev. Lett., 103, p. 251601. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.103.251601Abelev, B.I., (2010) Phys. Rev. C, 81, p. 054908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.81.054908Abelev, B., (2013) Phys. Rev. Lett., 110, p. 012301. , (ALICE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.012301Wang, Q., (2012), http://drupal.star.bnl.gov/STAR/theses/phd/quanwang, Ph.D. thesis, Purdue University, arXiv:1205.4638Ackermann, K.H., (2003) Nucl. Instrum. Methods A, 499, p. 624. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01960-5Bieser, F.S., (2003) Nucl. Instrum. Methods A, 499, p. 766. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01974-5Adler, C., (2003) Nucl. Instrum. Methods A, 499, p. 433. , NIMAER 0168-9002 10.1016/j.nima.2003.08.112Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Ackermann, K.H., (1999) Nucl. Phys. A, 661, p. 681. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/S0375-9474(99)85117-3Anderson, M., (2003) Nucl. Instrum. Methods A, 499, p. 659. , NIMAER 0168-9002 10.1016/S0168-9002(02)01964-2Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Wang, G., (2005), http://drupal.star.bnl.gov/STAR/theses/ph-d/gang-wang, Ph.D. thesis, UCLAAdamczyk, L., (2012) Phys. Rev. Lett., 108, p. 202301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.108.202301Wang, F., (2010) Phys. Rev. C, 81, p. 064902. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064902Pratt, S., Schlichting, S., Gavin, S., (2011) Phys. Rev. C, 84, p. 024909. , PRVCAN 0556-2813 10.1103/PhysRevC.84.024909Adams, J., (2005) Phys. Rev. Lett., 95, p. 152301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.95.152301Aggarwal, M.M., (2010) Phys. Rev. C, 82, p. 024912. , (STAR collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.82.024912Abelev, B.I., (2009) Phys. Rev. Lett., 102, p. 052302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.102.052302Abelev, B.I., (2009) Phys. Rev. C, 80, p. 064912. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.80.064912Abelev, B.I., (2010) Phys. Rev. Lett., 105, p. 022301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.105.022301Agakishiev, H., (STAR Collaboration), arXiv:1010.0690Petersen, H., Renk, T., Bass, S.A., (2011) Phys. Rev. C, 83, p. 014916. , PRVCAN 0556-2813 10.1103/PhysRevC.83.014916Adamczyk, L., (2013) Phys. Rev. C, 88, p. 064911. , (STAR Collaboration),. 10.1103/PhysRevC.88.064911Asakawa, M., Majumder, A., Müller, B., (2010) Phys. Rev. C, 81, p. 064912. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064912Bzdak, A., Koch, V., Liao, J., (2010) Phys. Rev. C, 81, pp. 031901R. , PRVCAN 0556-2813 10.1103/PhysRevC.81.031901Liao, J., Koch, V., Bzdak, A., (2010) Phys. Rev. C, 82, p. 054902. , PRVCAN 0556-2813 10.1103/PhysRevC.82.054902Ma, G.-L., Zhang, B., (2011) Phys. Lett. B, 700, p. 39. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.04.057Voloshin, S.A., (2010) Phys. Rev. Lett., 105, p. 172301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.17230
Dielectron Mass Spectra From Au+au Collisions At Snn =200 Gev
We report the STAR measurements of dielectron (e+e-) production at midrapidity (|yee|<1) in Au+Au collisions at sNN=200GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 (ρ-like), 0.76-0.80 (ω-like), and 0.98-1.05 (φ-like) GeV/c2. The spectrum in the ω-like and φ-like regions can be well described by the hadronic cocktail simulation. In the ρ-like region, however, the vacuum ρ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77±0.11(stat)±0.24(syst)±0. 33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the ρ meson. The excess yield in the ρ-like region increases with the number of collision participants faster than the ω and φ yields. Theoretical models with broadened ρ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies. © 2014 American Physical Society.1132DOE; National Science Foundation; NSF; National Science Foundation; NSFC; National Science FoundationAdams, J., Aggarwal, M.M., Ahammed, Z., Amonett, J., Anderson, B.D., Arkhipkin, D., Averichev, G.S., Hallman, T.J., Experimental and theoretical challenges in the search for the quark-gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions (2005) Nuclear Physics A, 757 (1-2 SPEC. ISS.), pp. 102-183. , DOI 10.1016/j.nuclphysa.2005.03.085, PII S0375947405005294Adcox, K., Adler, S.S., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Jamel, A., Zajc, W.A., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration (2005) Nuclear Physics A, 757 (1-2 SPEC. ISS.), pp. 184-283. , DOI 10.1016/j.nuclphysa.2005.03.086, PII S0375947405005300Back, B.B., Baker, M.D., Ballintijn, M., Barton, D.S., Becker, B., Betts, R.R., Bickley, A.A., Zhang, J., The PHOBOS perspective on discoveries at RHIC (2005) Nuclear Physics A, 757 (1-2 SPEC. ISS.), pp. 28-101. , DOI 10.1016/j.nuclphysa.2005.03.084, PII S0375947405005282Arsene, I., Bearden, I.G., Beavis, D., Besliu, C., Budick, B., Boggild, H., Chasman, C., Zgura, I.S., Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment (2005) Nuclear Physics A, 757 (1-2 SPEC. ISS.), pp. 1-27. , DOI 10.1016/j.nuclphysa.2005.02.130, PII S0375947405002770Shuryak, E., (1980) Phys. Rep., 61, p. 71. , PRPLCM 0370-1573 10.1016/0370-1573(80)90105-2Rapp, R., (2001) Phys. Rev. C, 63, p. 054907. , PRVCAN 0556-2813 10.1103/PhysRevC.63.054907Rapp, R., Wambach, J., (2000) Adv. Nucl. Phys., 25, p. 1. , 10.1007/0-306-47101-9-1Brown, G.E., Rho, M., (1996) Phys. Rep., 269, p. 333. , PRPLCM 0370-1573 10.1016/0370-1573(95)00067-4Rapp, R., Wambach, J., (1999) Eur. Phys. J. A, 6, p. 415. , EPJAFV 1434-6001 10.1007/s100500050364Porter, R.J., (1997) Phys. Rev. Lett., 79, p. 1229. , (DLS Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.79.1229Agakichiev, G., Agodi, C., Alvarez-Pol, H., Balanda, A., Bertini, D., Bielcik, J., Bellia, G., Bohmer, M., Dielectron production in C12+C12 collisions at 2AGeV with the HADES spectrometer (2007) Physical Review Letters, 98 (5), p. 052302. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.052302&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.052302Adamova, G., (2011) Phys. Rev. C, 84, p. 014902. , (HADES Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.84.014902Angelis A L, S., (2000) Eur. Phys. J. C, 13, p. 433. , (HELIOS/3 Collaboration),. EPCFFB 1434-6044 10.1007/s100520050707Agakichiev, G., (2003) Phys. Rev. Lett., 91, p. 042301. , (CERES Collaboration), ()PRLTAO 0031-9007 10.1103/PhysRevLett.91.042301Agakichiev, G., Appelshauser, H., Bielcikova, J., Baur, R., Braun-Munzinger, P., Cherlin, A., Damjanovic, S., Yurevich, V., E+ e- -pair production in Pb-Au collisions at 158 GeV per nucleon (2005) European Physical Journal C, 41 (4), pp. 475-513. , DOI 10.1140/epjc/s2005-02272-3Arnaldi, R., Averbeck, R., Banicz, K., Castor, J., Chaurand, B., Cicalo, C., Colla, A., Wohri, H.K., First measurement of the spectral function in high-energy nuclear collisions (2006) Physical Review Letters, 96 (16), p. 162302. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.96.162302&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.96.162302Arnaldi, R., (2008) Phys. Rev. Lett., 100, p. 022302. , (NA60 Collaboration), ()PRLTAO 0031-9007 10.1103/PhysRevLett.100.022302Arnaldi, R., (2009) Eur. Phys. J. C, 59, p. 607. , (NA60 Collaboration),. EPCFFB 1434-6044 10.1140/epjc/s10052-008-0857-2Adare, A., (2010) Phys. Rev. C, 81, p. 034911. , (PHENIX Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.81.034911Van Hees, H., Rapp, R., Comprehensive interpretation of thermal dileptons measured at the CERN super proton synchrotron (2006) Physical Review Letters, 97 (10), p. 102301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.97.102301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.97.102301Van Hees, H., Rapp, R., (2008) Nucl. Phys., A806, p. 339. , NUPBBO 0550-3213 10.1016/j.nuclphysa.2008.03.009Ruppert, J., Gale, C., Renk, T., Lichard, P., Kapusta, J.I., Low mass dimuons produced in relativistic nuclear collisions (2008) Physical Review Letters, 100 (16), p. 162301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.100.162301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.100.162301Renk, T., Ruppert, J., (2008) Phys. Rev. C, 77, p. 024907. , PRVCAN 0556-2813 10.1103/PhysRevC.77.024907Dusling, K., Teaney, D., Zahed, I., (2007) Phys. Rev. C, 75, p. 024908. , PRVCAN 0556-2813 10.1103/PhysRevC.75.024908Linnyk, O., Bratkovskaya, E.L., Ozvenchuk, V., Cassing, W., Ko, C.M., (2011) Phys. Rev. C, 84, p. 054917. , PRVCAN 0556-2813 10.1103/PhysRevC.84.054917Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Anderson, M., Berkovitz, J., Betts, W., Bossingham, R., Bieser, F., Brown, R., Burks, M., Zhang, W., The STAR time projection chamber: A unique tool for studying high multiplicity events at RHIC (2003) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499 (2-3), pp. 659-678. , DOI 10.1016/S0168-9002(02)01964-2Llope, W.J., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 661, pp. S110. , (for the STAR Collaboration),. NIMAER 0168-9002 10.1016/j.nima.2010.07. 086Shao, M., Barannikova, O., Dong, X., Fisyak, Y., Ruan, L., Sorensen, P., Xu, Z., (2006) Nucl. Instrum. Methods Phys. Res., Sect. A, 558, p. 419. , NIMAER 0168-9002 10.1016/j.nima.2005.11.251Adamczyk, L., (2012) Phys. Rev. C, 86, p. 024906. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.86.024906http://wwwasdoc.web.cern.ch/wwwasdoc/geant_html3/geantall.html, geant 3.21, CERN program libraryZhao, J., (2013), https://drupal.star.bnl.gov/STAR/theses/phd-32, Ph.D. thesis, Shanghai Institute of Applied PhysicsTang, Z., Xu, Y., Ruan, L., Van Buren, G., Wang, F., Xu, Z., (2009) Phys. Rev. C, 79, p. 051901. , PRVCAN 0556-2813 10.1103/PhysRevC.79.051901Tang, Z.-B., Yi, L., Ruan, L.-J., Shao, M., Li, C., Chen, H.-F., Mohanty, B., Xu, Z.-B., (2013) Chin. Phys. Lett., 30, p. 031201. , CPLEEU 0256-307X 10.1088/0256-307X/30/3/031201Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration), ()PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Abelev, B.I., Aggarwal, M.M., Ahammed, Z., Anderson, B.D., Anderson, M., Arkhipkin, D., Averichev, G.S., Guertin, S.M., Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at sNN=200a GeV (2006) Physical Review Letters, 97 (15), p. 152301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.97.152301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.97.152301Alder, S.S., (2003) Phys. Rev. Lett., 91, p. 072301. , (PHENIX Collaboration), ()PRLTAO 0031-9007 10.1103/PhysRevLett.91. 072301Adler, S.S., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Alexander, J., Amirikas, R., Hayano, R., Identified charged particle spectra and yields in Au+Au collisions at SNN=200 GeV (2004) Physical Review C - Nuclear Physics, 69 (3), pp. 0349091-03490932. , DOI 10.1103/PhysRevC.69.034909, 034909Adler, S.S., (2007) Phys. Rev. C, 75, p. 024909. , (PHENIX Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.75.024909Adams, J., (2005) Phys. Lett. B, 612, p. 181. , (STAR Collaboration),. PYLBAJ 0370-2693 10.1016/j.physletb.2004.12.082Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Bataineh, H., Alexander, J., Al-Jamel, A., J/production versus centrality, transverse momentum, and rapidity in Au+Au collisions at s NN=200 GeV (2007) Physical Review Letters, 98 (23), p. 232301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.232301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.232301Sjostrand, T., Eden, P., Friberg, C., Lonnblad, L., Miu, G., Mrenna, S., Norrbin, E., High-energy-physics event generation with PYTHIA 6.1 (2001) Computer Physics Communications, 135 (2), pp. 238-259. , DOI 10.1016/S0010-4655(00)00236-8, PII S0010465500002368L. Adamczyk (STAR Collaboration), arXiv:1404.6185Rapp, R., Proc. Sci., 2013 (CPOD2013), p. 008Rapp, R., (private communication)Linnyk, O., Cassing, W., Manninen, J., Bratkovskaya, E.L., Ko, C.M., (2012) Phys. Rev. C, 85, p. 024910. , PRVCAN 0556-2813 10.1103/PhysRevC.85.024910Linnyk, O., (private communication)Cassing, W., Bratkovskaya, E.L., (2009) Nucl. Phys., A831, p. 215. , NUPBBO 0550-3213 10.1016/j.nuclphysa.2009.09.007Bratkovskaya, E.L., Cassing, W., Konchakovski, V.P., Linnyk, O., (2011) Nucl. Phys., A856, p. 162. , NUPHA7 0029-5582 10.1016/j.nuclphysa.2011.03.003Xu, H.J., Chen, H.F., Dong, X., Wang, Q., Zhang, Y.F., (2012) Phys. Rev. C, 85, p. 024906. , PRVCAN 0556-2813 10.1103/PhysRevC.85.024906Vujanovic, G., Young, C., Schenke, B., Jeon, S., Rapp, R., Gale, C., (2013) Nucl. Phys., A904, pp. 557c. , NUPBBO 0550-3213 10.1016/j.nuclphysa.2013.02.075Gujanovic, G., Young, C., Schenke, B., Rapp, R., Jeon, S., Gale, C., (2014) Phys. Rev. C, 89, p. 034904. , PRVCAN 0556-2813 10.1103/PhysRevC.89.034904Heinz, U., Lee, K.S., (1991) Phys. Lett. B, 259, p. 162. , PYLBAJ 0370-2693 10.1016/0370-2693(91)90152-GAdare, A., Afanasiev, S., Aidala, C., Ajitanand, N.N., Akiba, Y., Al-Bataineh, H., Alexander, J., Aphecetche, L., Energy loss and flow of heavy quarks in Au+Au collisions at sNN=200GeV (2007) Physical Review Letters, 98 (17), p. 172301. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.172301&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.17230
Vera Maslow levele Lukács Györgynek
see paper for full list of authorsThe measurement of J/{psi} azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au+Au collisions at {sqrt{s_{NN}}} = 200 GeV. The measured J/{psi} elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/{psi} with relatively large transverse momentum are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations
Suppression Of Υ{hooked} Production In D + Au And Au + Au Collisions At Snn=200gev
We report measurements of Υ{hooked} meson production in p + p, d + Au, and Au + Au collisions using the STAR detector at RHIC. We compare the Υ{hooked} yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d + Au data and in hot nuclear matter using Au + Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Υ{hooked}(1S + 2S + 3S) in the rapidity range |y| < 1 in d + Au collisions of R dAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + psyst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R A A = 0.49 ± 0.1(stat.) ± 0.02(syst.) ± 0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Υ{hooked} mesons in Au + Au collisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made. © 2014.735127137Matsui, T., Satz, H., (1986) Phys. Lett. B, 178, p. 416Brambilla, N., Eidelman, S., Heltsley, B.K., Vogt, R., Bodwin, G.T., Eichten, E., Frawley, A.D., Meyer, A.B., (2011) Eur. Phys. J. C, 71, p. 1534. , arxiv:1010.5827Karsch, F., Laermann, E., (2004) Quark Gluon Plasma 3, pp. 1-59. , arxiv:hep-lat/0305025, World Scientific, R.C. Hwa (Ed.)Cheng, M., Ejiri, S., Hegde, P., Karsch, F., Kaczmarek, O., Laermann, E., Mawhinney, R.D., Miao, C., (2010) Phys. Rev. D, 81, p. 054504. , arxiv:0911.2215Borsanyi, S., (2010) J. High Energy Phys., 1009, p. 073. , arxiv:1005.3508, Wuppertal-Budapest CollaborationDigal, S., Petreczky, P., Satz, H., (2001) Phys. Rev. D, 64, p. 094015. , arxiv:hep-ph/0106017Laine, M., Philipsen, O., Romatschke, P., Tassler, M., (2007) J. High Energy Phys., 703, p. 054. , arxiv:hep-ph/0611300Petreczky, P., Miao, C., Mocsy, A., (2011) Nucl. Phys. A, 855, p. 125. , arxiv:1012.4433Dumitru, A., Guo, Y., Strickland, M., (2009) Phys. Rev. D, 79, p. 114003. , arxiv:0903.4703Rothkopf, A., Hatsuda, T., Sasaki, S., (2012) Phys. Rev. Lett., 108, p. 162001. , arxiv:1108.1579Adare, A., (2007) Phys. Rev. Lett., 98, p. 232002. , arxiv:hep-ex/0611020, PHENIX CollaborationAdare, A., (2010) Phys. Rev. D, 82, p. 012001. , arxiv:0912.2082, PHENIX CollaborationAbelev, B.I., (2010) Phys. Rev. D, 82, p. 012004. , arxiv:1001.2745, STAR CollaborationAgakishiev, H., (2011) Phys. Rev. D, 83, p. 052006. , arxiv:1102.2611, STAR CollaborationCacciari, M., Nason, P., Vogt, R., (2005) Phys. Rev. Lett., 95, p. 122001. , arxiv:hep-ph/0502203Adams, J., (2005) Phys. Rev. Lett., 94, p. 062301. , arxiv:nucl-ex/0407006, STAR CollaborationAdare, A., (2011) Phys. Rev. C, 84, p. 044905. , arxiv:1005.1627, PHENIX CollaborationGerschel, C., Hufner, J., (1988) Phys. Lett. B, 207, p. 253Gerschel, C., Hufner, J., (1999) Annu. Rev. Nucl. Part. Sci., 49, p. 255. , arxiv:hep-ph/9802245Lin, Z.-W., Ko, C.M., (2001) Phys. Lett. B, 503, p. 104. , arxiv:nucl-th/0007027Alde, D.M., Baer, H.W., Carey, T.A., Garvey, G.T., Klein, A., Lee, C., Leitch, M.J., Lillberg, J.W., (1991) Phys. Rev. Lett., 66, p. 2285Alessandro, B., (2006) Eur. Phys. J. C, 48, p. 329. , arxiv:nucl-ex/0612012, NA50 CollaborationFrawley, A.D., Ullrich, T., Vogt, R., (2008) Phys. Rep., 462, p. 125. , arxiv:0806.1013Vogt, R., Nelson, R.E., Frawley, A.D., (2012) PoS ConfinementX, 203. , Calculations for charmonium with shadowing done inFerreiro, E.G., Fleuret, F., Lansberg, J.P., Matagne, N., Rakotozafindrabe, A., (2013) Eur. Phys. J. C, 73, p. 2427. , arxiv:1110.5047Arleo, F., Peigné, S., (2013) J. High Energy Phys., 1303, p. 122. , arxiv:1212.0434, private communicationStrickland, M., Bazow, D., (2012) Nucl. Phys. A, 879, p. 25. , arxiv:1112.2761Emerick, A., Zhao, X., Rapp, R., (2012) Eur. Phys. J. A, 48, p. 72. , arxiv:1111.6537Liu, Y., Chen, B., Xu, N., Zhuang, P., (2011) Phys. Lett. B, 697, p. 32. , arxiv:1009.2585Anderson, M., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 499, p. 659Beddo, M., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 499, p. 725Vogt, R., http://rhicii-science.bnl.gov/heavy/doc/April05Meeting/, RHIC-II Science Workshop April 28-30, 2005Sjostrand, T., arxiv:0809.0303Gaiser, J., , p. 178. , PhD thesis, SLAC-R-255, Appendix FAdare, A., (2012) Phys. Rev. Lett., 109, p. 242301. , arxiv:1211.4017, PHENIX CollaborationEskola, K.J., Paukkunen, H., Salgado, C.A., (2009) J. High Energy Phys., 904, p. 065. , arxiv:0902.4154Chatrchyan, S., (2011) Phys. Rev. Lett., 107, p. 052302. , CMS CollaborationChatrchyan, S., (2012) J. High Energy Phys., 1205, p. 063. , arxiv:1201.5069, CMS CollaborationChatrchyan, S., (2012) Phys. Rev. Lett., 109, p. 222301. , arxiv:1208.2826, CMS CollaborationKhachatryan, V., (2011) Phys. Rev. D, 83, p. 112004. , arxiv:1012.5545, CMS CollaborationMoreno, G., Brown, C.N., Cooper, W.E., Finley, D., Hsiung, Y.B., Jonckheere, A.M., Jostlein, H., Kaplan, D.M., (1991) Phys. Rev. D, 43, p. 2815Beringer, J., (2012) Phys. Rev. D, 86, p. 010001. , Particle Data GroupAffolder, T., (2000) Phys. Rev. Lett., 84, p. 2094. , arxiv:hep-ex/9910025, CDF CollaborationRolke, W.A., López, A.M., Conrad, J., (2005) Nucl. Instrum. Methods Phys. Res., Sect. A, 551, p. 493Adamczyk, L., (2013) Phys. Lett. B, 722, p. 55. , arxiv:1208.2736, STAR Collaboratio
Beam Energy Dependence Of Moments Of The Net-charge Multiplicity Distributions In Au+au Collisions At Rhic
We report the first measurements of the moments - mean (M), variance (2), skewness (S), and kurtosis (κ) - of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sNN=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, 2/M, S, and κ2, with the expectations from Poisson and negative binomial distributions (NBDs). The S values deviate from the Poisson baseline and are close to the NBD baseline, while the κ2 values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models. © 2014 American Physical Society.1139CAS; Ministry of Education of the People's Republic of China; MOE; Ministry of Education of the People's Republic of ChinaAdams, J., (2005) Nucl. Phys., A757, p. 102. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.085Aoki, Y., Endrådi, G., Fodor, Z., Katz S, D., Szabó K, K., (2006) Nature (London), 443, p. 675. , NATUAS 0028-0836 10.1038/nature05120Bowman E, S., Kapusta J, I., (2009) Phys. Rev. C, 79, p. 015202. , PRVCAN 0556-2813 10.1103/PhysRevC.79.015202Ejiri, S., (2008) Phys. Rev. D, 78, p. 074507. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.074507Fodor, Z., Katz S, D., J. High Energy Phys., 2004 (4), p. 050. , JHEPFG 1029-8479 10.1088/1126-6708/2004/04/050Gavai R, V., Gupta, S., (2008) Phys. Rev. D, 78, p. 114503. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.114503Cheng, M., (2008) Phys. Rev. D, 77, p. 014511. , PRVDAQ 1550-7998 10.1103/PhysRevD.77.014511Stephanov, M.A., (2004) Prog. Theor. Phys. Suppl., 153, p. 139. , PTPSEP 0375-9687 10.1143/PTPS.153.139Stephanov, M.A., (2005) Int. J. Mod. Phys. A, 20, p. 4387. , IMPAEF 0217-751X 10.1142/S0217751X05027965Herold, C., Nahrgang, M., Mitshustin, I., Bleicher, M., (2014) Nucl. Phys., A925, p. 14. , NUPABL 0375-9474 10.1016/j.nuclphysa.2014.01.010Stephanov M, A., Rajagopal, K., Shuryak E, V., (1998) Phys. Rev. Lett., 81, p. 4816. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.4816Stephanov M, A., Rajagopal, K., Shuryak E, V., (1999) Phys. Rev. D, 60, p. 114028. , PRVDAQ 0556-2821 10.1103/PhysRevD.60.114028Aggarwal M, M., (STAR Collaboration), arXiv:1007.2613Aggarwal M, M., (2010) Phys. Rev. Lett., 105, p. 022302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.105.022302Braun-Munzinger, P., Friman, B., Karsch, F., Redlich, K., Skokov, V., (2012) Nucl. Phys., A880, p. 48. , NUPABL 0375-9474 10.1016/j.nuclphysa.2012.02.010Asakawa, M., Ejiri, S., Kitazawa, M., (2009) Phys. Rev. Lett., 103, p. 262301. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.262301Skokov, V., Friman, B., Redlich, K., (2012) Phys. Lett. B, 708, p. 179. , PYLBAJ 0370-2693 10.1016/j.physletb.2012.01.022Kitazawa, M., Asakawa, M., (2012) Phys. Rev. C, 85, p. 021901. , PRVCAN 0556-2813 10.1103/PhysRevC.85.021901Bzdak, A., Koch, V., (2012) Phys. Rev. C, 86, p. 044904. , PRVCAN 0556-2813 10.1103/PhysRevC.86.044904Athanasiou, C., Rajagopal, K., Stephanov, M., (2010) Phys. Rev. D, 82, p. 074008. , PRVDAQ 1550-7998 10.1103/PhysRevD.82.074008Stephanov, M.A., (2009) Phys. Rev. Lett., 102, p. 032301. , PRLTAO 0031-9007 10.1103/PhysRevLett.102.032301Berdnikov, B., Rajagopal, K., (2000) Phys. Rev. D, 61, p. 105017. , PRVDAQ 0556-2821 10.1103/PhysRevD.61.105017Stephanov, M.A., (2010) Phys. Rev. D, 81, p. 054012. , PRVDAQ 1550-7998 10.1103/PhysRevD.81.054012Bazavov, A., (2012) Phys. Rev. Lett., 109, p. 192302. , PRLTAO 0031-9007 10.1103/PhysRevLett.109.192302Adamczyk, L., (2014) Phys. Rev. Lett., 112, p. 032302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.112.032302Cleymans, J., Oeschler, H., Redlich, K., Wheaton, S., (2006) Phys. Rev. C, 73, p. 034905. , PRVCAN 0556-2813 10.1103/PhysRevC.73.034905McDonald, D., Ph.D. thesis, Rice University, 2013Sahoo, N.R., (2013), Ph.D. thesis, Homi Bhabha National InstituteAnderson, M., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 499, p. 659. , NIMAER 0168-9002 10.1016/S0168-9002(02)01964-2Adler, C., Denisov, A., Garcia, E., Murray, M., Stroebele, H., White, S., (2001) Nucl. Instrum. Methods Phys. Res., Sect. A, 470, p. 488. , NIMAER 0168-9002 10.1016/S0168-9002(01)00627-1Llope W, J., (2004) Nucl. Instrum. Methods Phys. Res., Sect. A, 522, p. 252. , NIMAER 0168-9002 10.1016/j.nima.2003.11.414Whitten, C.A., (2008) AIP Conf. Proc., 980, p. 390. , APCPCS 0094-243X 10.1063/1.2888113Miller M, L., Reygers, K., Sanders S, J., Steinberg, P., (2007) Annu. Rev. Nucl. Part. Sci., 57, p. 205. , ARPSDF 0163-8998 10.1146/annurev.nucl.57.090506.123020Luo, X., Xu, J., Mohanty, B., Xu, N., (2013) J. Phys. G, 40, p. 105104. , JPGPED 0954-3899 10.1088/0954-3899/40/10/105104Sahoo N, R., De, S., Nayak T, K., (2013) Phys. Rev. C, 87, p. 044906. , PRVCAN 0556-2813 10.1103/PhysRevC.87.044906Abelev B, I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Luo, X., (2012) J. Phys. G, 39, p. 025008. , JPGPED 0954-3899 10.1088/0954-3899/39/2/025008Efron, B., Tibshirani R, J., (1993) An Introduction to the Bootstrap, , (Chapman & Hall/CRC, London)According to the central limit theorem, (Equation presented), (Equation presented), (Equation presented), and (Equation presented) are proportional to (Equation presented), (Equation presented), (Equation presented), and (Equation presented), respectivelyThe difference of two independent Poisson distributions is a Skellam distribution, for which (Equation presented), (Equation presented), and (Equation presented)Tarnowsky T, J., Westfall G, D., (2013) Phys. Lett. B, 724, p. 51. , PYLBAJ 0370-2693 10.1016/j.physletb.2013.05.064Andronic, A., (2010) Nucl. Phys., A837, p. 65. , NUPABL 0375-9474 10.1016/j.nuclphysa.2010.02.005Mukherjee, S., Wagner, M., Proc. Sci., 2013 (CPOD2013), p. 039Borsányi, S., Fodor, Z., Katz S, D., Krieg, S., Ratti, C., Szabó K, K., (2013) Phys. Rev. Lett., 111, p. 062005. , PRLTAO 0031-9007 10.1103/PhysRevLett.111.062005Borsanyi, S., Fodor, Z., Katz S, D., Krieg, S., Ratti, C., Szabo K, K., (2014) Phys. Rev. Lett., 113, p. 052301. , PRLTAO 0031-9007 10.1103/PhysRevLett.113.052301Alba, P., arXiv:1403.4903Kumar, L., Proc. Sci., 2013 (CPOD2013), p. 04