112 research outputs found

    Stabilisation of oil-in-water emulsions with non-chemical modified gelatinised starch

    Get PDF
    In this research, stabilisation of oil-in-water emulsions with non-chemically modified gelatinised starch is presented. Thus far only octenyl succinic anhydride(OSA) modified gelatinised starch has been known to adsorb at emulsion droplet interfaces, acting as emulsifiers. Screening a range of commercially available food starches revealed that a non-waxy rice starch, a waxy rice starch and the waxy maize starch PRIMA600 showed oil-in-water emulsifying ability following gelatinisation. The microstructure of emulsions formulated with 20 % oil and 1 % starch was stable for at least 3 months. Thermal, crystallinity and molecular property analyses as well as amylose and protein content revealed no obvious link to this property. Nevertheless, this research has provided the food industry with exciting results for the formulation of clean label emulsions. Moreover, it presents a concept for oral release food emulsions with destabilisation via salivary amylase digestion of the stabilising starch emulsifier

    Stabilisation of oil-in-water emulsions with non-chemical modified gelatinised starch

    Get PDF
    In this research, stabilisation of oil-in-water emulsions with non-chemically modified gelatinised starch is presented. Thus far only octenyl succinic anhydride(OSA) modified gelatinised starch has been known to adsorb at emulsion droplet interfaces, acting as emulsifiers. Screening a range of commercially available food starches revealed that a non-waxy rice starch, a waxy rice starch and the waxy maize starch PRIMA600 showed oil-in-water emulsifying ability following gelatinisation. The microstructure of emulsions formulated with 20 % oil and 1 % starch was stable for at least 3 months. Thermal, crystallinity and molecular property analyses as well as amylose and protein content revealed no obvious link to this property. Nevertheless, this research has provided the food industry with exciting results for the formulation of clean label emulsions. Moreover, it presents a concept for oral release food emulsions with destabilisation via salivary amylase digestion of the stabilising starch emulsifier

    Chain-selective isotopic labeling of the heterodimeric type iii secretion chaperone, scc4:Scc1, reveals the total structural rearrangement of the chlamydia trachomatis bi-functional protein, scc4

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Scc4 is an unusual bi-functional protein from Chlamydia trachomatis (CT) that functions as a type III secretion system (T3SS) chaperone and an RNA polymerase (RNAP)-binding protein. Both functions require interactions with protein partners during specific stages of the CT developmental cycle. As a T3SS chaperone, Scc4 binds Scc1 during the late stage of development to form a heterodimer complex, which chaperones the essential virulence effector, CopN. During the early-middle stage of development, Scc4 regulates T3SS gene expression by binding the σ66-containing RNAP holoenzyme. In order to study the structure and association mechanism of the Scc4:Scc1 T3SS chaperone complex using nuclear magnetic resonance (NMR) spectroscopy, we developed an approach to selectively label each chain of the Scc4:Scc1 complex with the15N-isotope. The approach allowed one protein to be visible in the NMR spectrum at a time, which greatly reduced resonance overlap and permitted comparison of the backbone structures of free and bound Scc4.1H,15N-heteronuclear single quantum coherence spectra of the15N-Scc4:Scc1 and Scc4:15N-Scc1 complexes showed a total structural rearrangement of Scc4 upon binding Scc1 and a dynamic region isolated to Scc1, respectively. Development of the chain-selective labeling approach revealed that the association of Scc4 and Scc1 requires partial denaturation of Scc1 to form the high affinity complex, while low affinity interactions occurred between the isolated proteins under non-denaturing conditions. These results provide new models for Scc4′s functional switching mechanism and Scc4:Scc1 association in CT

    The influence of charge on the multiple thermal transitions observed in xanthan

    Get PDF
    Helix-coil transitions in xanthans occur at lower temperatures when the pyruvate group is charged, destabilising the polymer chains. Increasing salt content increases the transition temperature by reducing the effective charge on the pyruvate. A simple equivalent mass action model predicts how transition temperatures change as a function of salt concentration. The functional form of the change in transition temperature (1/T) versus natural log (salt concentration) is approximately linear and similar to more traditional polyelectrolyte theories. Transition temperatures in xanthans containing nominally homogeneous pyruvate contents show biphasic transitions, this is because the phases contain different pyruvate levels, however the transitions approach one another in temperature and eventually merge as salt content is increased. It is proposed that pyruvate groups, despite being present at a lower concentration relative to glucuronic acid, dominate the charge interactions due to their location on the outside of the helices

    Building up Steam as Consumers: Women, Rice Cookers and the Consumption of Everyday Household Goods in Japan

    Get PDF
    This chapter discusses the increasingly important role played by women as everyday consumers in post-war Japan, focusing on their consumption of household and kitchen appliances, specifically the electric rice cooker. Two key areas are explored. First, I investigate the development, production and consumption of this appliance. The electric rice cooker was developed by Japanese manufacturers from the mid-1950s, and was at the time unique to the Japanese manufacturing sector and the Japanese consumer market. It rapidly achieved significance in both domestic and export markets.1 The analysis will focus on the rice cooker’s development and impact in the Japanese market during the post-war years as a key example of the importance of everyday household appliances in the history of gender and consumption in Japan, impacting on women’s roles inside and outside the home. The chapter will show that although the rice cooker was in many ways a humble product, it had a revolutionary impact on Japanese women’s primary role as housewives. Second, the chapter places the case-study of the rice cooker within a broader context, discussing the role played by Japanese women as key consumers of appliances and as a gendered consumer group. It will explore the significance of housewives as a consumer group in Japan during the post-war decades, the associated gendering of consumer practices, and the extent to which housewives, as the holders of the purse-strings within the Japanese nuclear household, were empowered by the establishment of the breadwinner-homemaker model

    Impact of Neospora caninum infection on the bioenergetics and transcriptome of cerebrovascular endothelial cells

    Get PDF
    In this work, the effects of the protozoan Neospora caninum on the bioenergetics, chemical composition, and elemental content of human brain microvascular endothelial cells (hBMECs) were investigated. We showed that N. caninum can impair cell mitochondrial (Mt) function and causes an arrest in host cell cycling at S and G2 phases. These adverse effects were also associated with altered expression of genes involved in Mt energy metabolism, suggesting Mt dysfunction caused by N. caninum infection. Fourier Transform Infrared (FTIR) spectroscopy analysis of hBMECs revealed alterations in the FTIR bands as a function of infection, where infected cells showed alterations in the absorption bands of lipid (2924 cm−1), amide I protein (1649 cm−1), amide II protein (1537 cm−1), nucleic acids and carbohydrates (1092 cm−1, 1047 cm−1, and 939 cm−1). By using quantitative synchrotron radiation X-ray fluorescence (μSR-XRF) imaging and quantification of the trace elements Zn, Cu and Fe, we detected an increase in the levels of Zn and Cu from 3 to 24 h post infection (hpi) in infected cells compared to control cells, but there were no changes in the level of Fe. We also used Affymetrix array technology to investigate the global alteration in gene expression of hBMECs and rat brain microvascular endothelial cells (rBMVECs) in response to N. caninum infection at 24 hpi. The result of transcriptome profiling identified differentially expressed genes involved mainly in immune response, lipid metabolism and apoptosis. These data further our understanding of the molecular events that shape the interaction between N. caninum and blood-brain-barrier endothelial cells

    α-Synuclein expression in response to bacterial ligands and metabolites in gut enteroendocrine cells: an in vitro proof of concept study

    Get PDF
    Caudo-rostral migration of pathological forms of α-synuclein from the gut to the brain is proposed as an early feature in Parkinson’s disease pathogenesis, but the underlying mechanisms remain unknown. Intestinal epithelial enteroendocrine cells sense and respond to numerous luminal signals, including bacterial factors, and transmit this information to the brain via the enteric nervous system and vagus nerve. There is evidence that gut bacteria composition and their metabolites change in Parkinson’s disease patients, and these alterations can trigger α-synuclein pathology in animal models of the disorder. Here, we investigated the effect of toll-like receptor and free fatty acid receptor agonists on the intracellular level of α-synuclein and its release using mouse secretin tumour cell line 1 enteroendocrine cells. Secretin tumour cell line 1 enteroendocrine cells were treated for 24 or 48 h with toll-like receptor agonists (toll-like receptor 4 selective lipopolysaccharide; toll-like receptor 2 selective Pam3CysSerLys4) and the free fatty acid receptor 2/3 agonists butyrate, propionate and acetate. The effect of selective receptor antagonists on the agonists’ effects after 24 hours was also investigated. The level of α-synuclein protein was measured in cell lysates and cell culture media by western blot and enzyme-linked immunosorbent assay. The level of α-synuclein and tumour necrosis factor messenger RNA was measured by quantitative reverse transcription real-time polymerase chain reaction. Stimulation of secretin tumour cell line 1 enteroendocrine cells for 24 and 48 hours with toll-like receptor and free fatty acid receptor agonists significantly increased the amount of intracellular α-synuclein and the release of α-synuclein from the cells into the culture medium. Both effects were significantly reduced by antagonists selective for each receptor. Toll-like receptor and free fatty acid receptor agonists also significantly increased tumour necrosis factor transcription, and this was effectively inhibited by corresponding antagonists. Elevated intracellular α-synuclein increases the likelihood of aggregation and conversion to toxic forms. Factors derived from bacteria induce α-synuclein accumulation in secretin tumour cell line 1 enteroendocrine cells. Here, we provide support for a mechanism by which exposure of enteroendocrine cells to specific bacterial factors found in Parkinson’s disease gut dysbiosis might facilitate accumulation of α-synuclein pathology in the gut

    The role of RIPK1 mediated cell death in acute on chronic liver failure

    Get PDF
    Acute-on-chronic liver failure (ACLF) is characterized predominantly by non-apoptotic forms of hepatocyte cell death. Necroptosis is a form of programmed lytic cell death in which receptor interacting protein kinase (RIPK) 1, RIPK3 and phosphorylated mixed lineage kinase domain-like (pMLKL) are key components. This study was performed to determine the role of RIPK1 mediated cell death in ACLF. RIPK3 plasma levels and hepatic expression of RIPK1, RIPK3, and pMLKL were measured in healthy volunteers, stable patients with cirrhosis, and in hospitalized cirrhotic patients with acutely decompensated cirrhosis, with and without ACLF (AD). The role of necroptosis in ACLF was studied in two animal models of ACLF using inhibitors of RIPK1, necrostatin-1 (NEC-1) and SML2100 (RIPA56). Plasma RIPK3 levels predicted the risk of 28- and 90-day mortality (AUROC, 0.653 (95%CI 0.530–0.776), 0.696 (95%CI 0.593–0.799)] and also the progression of patients from no ACLF to ACLF [0.744 (95%CI 0.593–0.895)] and the results were validated in a 2nd patient cohort. This pattern was replicated in a rodent model of ACLF that was induced by administration of lipopolysaccharide (LPS) to bile-duct ligated rats and carbon tetrachloride-induced fibrosis mice administered galactosamine (CCL4/GalN). Suppression of caspase-8 activity in ACLF rodent model was observed suggesting a switch from caspase-dependent cell death to necroptosis. NEC-1 treatment prior to administration of LPS significantly reduced the severity of ACLF manifested by reduced liver, kidney, and brain injury mirrored by reduced hepatic and renal cell death. Similar hepato-protective effects were observed with RIPA56 in a murine model of ACLF induced by CCL4/GalN. These data demonstrate for the first time the importance of RIPK1 mediated cell death in human and rodent ACLF. Inhibition of RIPK1 is a potential novel therapeutic approach to prevent progression of susceptible patients from no ACLF to ACLF
    • …
    corecore