19 research outputs found

    IN VIVO and IN VITRO 27AI NMR studies of aluminium(III) chelates of triazacyclononane polycarboxylate ligands

    Get PDF
    The metallic radioisotope of a known radiopharmaceutical chelate, 67Ga(NOTA) (NOTA=1,4,7-triazacyclonane-1,4,7-triacetic acid), used for tumor detection, was substituted by the chemically similar but non radioactive aluminum ion. Our aim was to detect and evaluate the in vivo behavior of the chelate. For this purpose, Al(NOTA) and the related chelate Al(NODASA) (NODASA=1,4,7-triazacyclononane-1-succinic acid-4,7-diacetic acid) were studied using in vitro and in vivo 27Al NMR spectroscopy in rats. Both chelates showed high stability towards acid catalyzed dissociation and their 27Al NMR resonances are characteristic of highly symmetrical species, with chemical shifts within the range for octahedral or pseudo-octahedral geometries. The thermodynamic stability constant of the novel chelate Al(NODASA) was estimated using 27Al NMR. The obtained value suggested that the chelate does not undergo in vivo demetalation by transferrin. The in vivo spectroscopic studies and the analysis of blood and urine samples for Al(III) concentrations indicated that the chelates remain intact under physiological conditions and that they are mainly eliminated from the body through the kidneys.Swiss National Science Foundation. NOVARTIS

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    Identification of Antibiotic Stress-Inducible Promoters: A Systematic Approach to Novel Pathway-Specific Reporter Assays for Antibacterial Drug Discovery

    No full text
    As present antibiotics therapy becomes increasingly ineffectual, new technologies are required to identify and develop novel classes of antibacterial agents. An attractive alternative to the classical target-based approach is the use of promoter-inducible reporter assays for high-throughput screening. The wide usage of these assays is, however, limited by the small number of specifically responding promoters that are known at present. This work describes a novel approach for identifying genetic regulators that are suitable for the design of pathway-specific assays. The basis for the proposed strategy is a large set of antibiotics-triggered expression profiles (“Reference Compendium”). Pattern recognition algorithms applied to the expression data pinpoint the relevant transcription-factor-binding sites in whole-genome sequences. Using this technique, we constructed a fatty-acid-pathway-specific reporter assay that is based on a novel stress-inducible promoter. In a proof-of-principle experiment, this assay was shown to enable screening for new small-molecule inhibitors of bacterial growth

    The complete genome sequence of the carcinogenic bacterium \u3cem\u3eHelicobacter hepaticus\u3c/em\u3e

    No full text
    Helicobacter hepaticus causes chronic hepatitis and liver cancer in mice. It is the prototype enterohepatic Helicobacter species and a close relative of Helicobacter pylori, also a recognized carcinogen. Here we report the complete genome sequence of H. hepaticus ATCC51449. H. hepaticus has a circular chromosome of 1,799,146 base pairs, predicted to encode 1,875 proteins. A total of 938, 953, and 821 proteins have orthologs in H. pylori, Campylobacter jejuni, and both pathogens, respectively. H. hepaticus lacks orthologs of most known H. pylori virulence factors, including adhesins, the VacA cytotoxin, and almost all cag pathogenicity island proteins, but has orthologs of the C. jejuni adhesin PEB1 and the cytolethal distending toxin (CDT). The genome contains a 71-kb genomic island (HHGI1) and several genomic islets whose G+C content differs from the rest of the genome. HHGI1 encodes three basic components of a type IV secretion system and other virulence protein homologs, suggesting a role of HHGI1 in pathogenicity. The genomic variability of H. hepaticus was assessed by comparing the genomes of 12 H. hepaticus strains with the sequenced genome by microarray hybridization. Although five strains, including all those known to have caused liver disease, were indistinguishable from ATCC51449, other strains lacked between 85 and 229 genes, including large parts of HHGI1, demonstrating extensive variation of genome content within the species
    corecore