3,480 research outputs found

    Stationary Josephson effect in a weak-link between nonunitary triplet superconductors

    Get PDF
    A stationary Josephson effect in a weak-link between misorientated nonunitary triplet superconductors is investigated theoretically. The non-self-consistent quasiclassical Eilenberger equation for this system has been solved analytically. As an application of this analytical calculation, the current-phase diagrams are plotted for the junction between two nonunitary bipolar ff-wave superconducting banks. A spontaneous current parallel to the interface between superconductors has been observed. Also, the effect of misorientation between crystals on the Josephson and spontaneous currents is studied. Such experimental investigations of the current-phase diagrams can be used to test the pairing symmetry in the above-mentioned superconductors.Comment: 6 pages and 6 figure

    Cyclotron effective masses in layered metals

    Get PDF
    Many layered metals such as quasi-two-dimensional organic molecular crystals show properties consistent with a Fermi liquid description at low temperatures. The effective masses extracted from the temperature dependence of the magnetic oscillations observed in these materials are in the range, m^*_c/m_e \sim 1-7, suggesting that these systems are strongly correlated. However, the ratio m^*_c/m_e contains both the renormalization due to the electron-electron interaction and the periodic potential of the lattice. We show that for any quasi-two-dimensional band structure, the cyclotron mass is proportional to the density of states at the Fermi energy. Due to Luttinger's theorem, this result is also valid in the presence of interactions. We then evaluate m_c for several model band structures for the \beta, \kappa, and \theta families of (BEDT-TTF)_2X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X is an anion. We find that for \kappa-(BEDT-TTF)_2X, the cyclotron mass of the \beta-orbit, m^{*\beta}_c, is close to 2 m^{*\alpha}_c, where m^{*\alpha}_c is the effective mass of the \alpha- orbit. This result is fairly insensitive to the band structure details. For a wide range of materials we compare values of the cyclotron mass deduced from band structure calculations to values deduced from measurements of magnetic oscillations and the specific heat coefficient.Comment: 12 pages, 3 eps figure

    Quantum Kinks: Solitons at Strong Coupling

    Full text link
    We examine solitons in theories with heavy fermions. These ``quantum'' solitons differ dramatically from semi-classical (perturbative) solitons because fermion loop effects are important when the Yukawa coupling is strong. We focus on kinks in a (1+1)(1+1)--dimensional ϕ4\phi^4 theory coupled to fermions; a large-NN expansion is employed to treat the Yukawa coupling gg nonperturbatively. A local expression for the fermion vacuum energy is derived using the WKB approximation for the Dirac eigenvalues. We find that fermion loop corrections increase the energy of the kink and (for large gg) decrease its size. For large gg, the energy of the quantum kink is proportional to gg, and its size scales as 1/g1/g, unlike the classical kink; we argue that these features are generic to quantum solitons in theories with strong Yukawa couplings. We also discuss the possible instability of fermions to solitons.Comment: 21 pp. + 2 figs., phyzzx, JHU-TIPAC-92001

    Evaluating Scalable Distributed Erlang for Scalability and Reliability

    Get PDF
    Large scale servers with hundreds of hosts and tens of thousands of cores are becoming common. To exploit these platforms software must be both scalable and reliable, and distributed actor languages like Erlang are a proven technology in this area. While distributed Erlang conceptually supports the engineering of large scale reliable systems, in practice it has some scalability limits that force developers to depart from the standard language mechanisms at scale. In earlier work we have explored these scalability limitations, and addressed them by providing a Scalable Distributed (SD) Erlang library that partitions the network of Erlang Virtual Machines (VMs) into scalable groups (s_groups). This paper presents the first systematic evaluation of SD Erlang s_groups and associated tools, and how they can be used. We present a comprehensive evaluation of the scalability and reliability of SD Erlang using three typical benchmarks and a case study. We demonstrate that s_groups improve the scalability of reliable and unreliable Erlang applications on up to 256 hosts (6,144 cores). We show that SD Erlang preserves the class-leading distributed Erlang reliability model, but scales far better than the standard model. We present a novel, systematic, and tool-supported approach for refactoring distributed Erlang applications into SD Erlang. We outline the new and improved monitoring, debugging and deployment tools for large scale SD Erlang applications. We demonstrate the scaling characteristics of key tools on systems comprising up to 10 K Erlang VMs

    Does J/ψπ+πJ/\psi \rightarrow \pi^{+} \pi^{-} fix the Electromagnetic Form Factor Fπ(t)F_{\pi}(t) at t=MJ/ψ2t=M_{J/\psi}^2?

    Full text link
    We show that the J/ψπ+πJ/\psi \rightarrow \pi^{+} \pi^{-} decay is a reliable source of information for the electromagnetic form factor of the pion at t=MJ/ψ2=9.6GeV2t=M_{J/\psi}^2=9.6 {\rm GeV}^2 by using general arguments to estimate, or rather, put upper bounds on, the background processes that could spoil this extraction. We briefly comment on the significance of the resulting Fπ(MJ/ψ2)F_{\pi}(M_{J/\psi}^2).Comment: 10 pages revtex manuscript, one figure--not included, U. of MD PP #94-00

    Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour

    Get PDF
    The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and-unexpectedly-lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractant

    Upper critical field for electrons in two-dimensional lattice

    Full text link
    We address a problem of the upper critical field in a lattice described by a two-dimensional tight-binding model with the on-site pairing. We develop a finite-system-approach which enables investigation of magnetic and superconducting properties of electrons on clusters, consisting of a few thousand sites. We discuss how the quasiparticle density of states changes with the applied external magnetic field and present the temperature dependence of the upper critical field. We also briefly discuss possible extension of the model to account for the properties of high-temperature superconductors.Comment: 4 pages, 3 postscript figures, revte

    Extended bound states and resonances of two fermions on a periodic lattice

    Full text link
    The high-TcT_c cuprates are possible candidates for d-wave superconductivity, with the Cooper pair wave function belonging to a non-trivial irreducible representation of the lattice point group. We argue that this d-wave symmetry is related to a special form of the fermionic kinetic energy and does not require any novel pairing mechanism. In this context, we present a detailed study of the bound states and resonances formed by two lattice fermions interacting via a non-retarded potential that is attractive for nearest neighbors but repulsive for other relative positions. In the case of strong binding, a pair formed by fermions on adjacent lattice sites can have a small effective mass, thereby implying a high condensation temperature. For a weakly bound state, a pair with non-trivial symmetry tends to be smaller in size than an s-wave pair. These and other findings are discussed in connection with the properties of high-TcT_c cuprate superconductors.Comment: 21 pages, RevTeX, 4 Postscript figures, arithmetic errors corrected. An abbreviated version (no appendix) appeared in PRB on March 1, 199
    corecore