100 research outputs found

    QCD on Coarse Lattices

    Get PDF
    We show that the perturbatively-improved gluon action for QCD, once it is tadpole-improved, gives accurate results even with lattice spacings as large as 0.4~fm. {\em No\/} tuning of the couplings is required. Using this action and lattice spacing, we obtain a static potential that is rotationally invariant to within a few percent, the spin-averaged charmonium spectrum accurate to within 30--40~MeV, and scaling to within 5--10\%. We demonstrate that simulations on coarse lattices are several orders of magnitude less costly than simulations using current methods.Comment: 4 page

    First results from the asymmetric O(a) improved Fermilab action

    Get PDF
    We present first results from calculations using O(a) improved (FNAL) space-time asymmetric action on a 12^3 x 24 quenched lattice at \beta = 5.7 and c_SW = 1.57. The asymmetry parameter is determined non-perturbatively from the energy-momentum dispersion relation. This improvement scheme is mass dependent, and the calculations have been done in the charm and bottom quark mass sectors since it is at these heavier masses that the asymmetry is expected to be relevant.Comment: 3 pp. LaTeX2e, 6PostScript figures, uses espcrc2.sty. Contribution to Lattice99 (Pisa) proceedings (Improvement and Renormalisation

    A More Improved Lattice Action for Heavy Quarks

    Full text link
    We extend the Fermilab formalism for heavy quarks to develop a more improved action. We give results of matching calculations of the improvement couplings at tree level. Finally, we estimate the discretization errors associated with the new action.Comment: 3 pages, 1 figure, Lattice 2003 Tsukuba Japa

    Constrained Curve Fitting

    Get PDF
    We survey techniques for constrained curve fitting, based upon Bayesian statistics, that offer significant advantages over conventional techniques used by lattice field theorists.Comment: Lattice2001(plenary); plenary talk given by G.P. Lepage at Lattice 2001 (Berlin); 9 pages, 5 figures (postscript specials

    Estimated Errors in |Vcd|/|Vcs| from Semileptonic D Decays

    Full text link
    We estimate statistical and systematic errors in the extraction of the CKM ratio |Vcd|/|Vcs| from exclusive D-meson semileptonic decays using lattice QCD and anticipated new experimental results.Comment: LATTICE98(heavyqk), LaTeX, 3 pages, 2 postscript figures, uses espcrc2.sty and hyperbasics.te

    Lattice QCD on Small Computers

    Get PDF
    We demonstrate that lattice QCD calculations can be made 10310^3--10610^6 times faster by using very coarse lattices. To obtain accurate results, we replace the standard lattice actions by perturbatively-improved actions with tadpole-improved correction terms that remove the leading errors due to the lattice. To illustrate the power of this approach, we calculate the static-quark potential, and the charmonium spectrum and wavefunctions using a desktop computer. We obtain accurate results that are independent of the lattice spacing and agree well with experiment.Comment: 15 pages, 3 figs incl as LaTex pictures Minor additions to tables and tex

    Light Quark Masses with an O(a)-Improved Action

    Get PDF
    We present the recent Fermilab calculations of the masses of the light quarks, using tadpole-improved Sheikholeslami-Wohlert (SW) quarks. Various sources of systematic errors are studied. Our final result for the average light quark mass in the quenched approximation evaluated in the MSˉ\bar{MS} scheme is mˉq(μ=2GeV;nf=0)=(mu+md)/2=3.6±0.6MeV\bar{m}_q(\mu=2 GeV;n_f=0)= (m_u+m_d)/2=3.6 \pm 0.6 MeV.Comment: 3 pgs. 3 figures. espcrc2.sty included. Talk presented at LATTICE96(phenomenology

    A precise determination of the Bc mass from dynamical lattice QCD

    Get PDF
    We perform a precise calculation of the mass of the B_c meson using unquenched configurations from the MILC collaboration including 2+1 flavours of improved staggered quarks. Lattice NRQCD and the Fermilab formalism are used to describe the b and c quarks respectively. We find the mass of the B_c meson to be 6.304(16) GeVComment: Talk presented at Lattice2004(heavy), Fermilab, June 21-26. 3 pages, 2 figure

    Theta-terms in nonlinear sigma-models

    Get PDF
    We trace the origin of theta-terms in non-linear sigma-models as a nonperturbative anomaly of current algebras. The non-linear sigma-models emerge as a low energy limit of fermionic sigma-models. The latter describe Dirac fermions coupled to chiral bosonic fields. We discuss the geometric phases in three hierarchies of fermionic sigma-models in spacetime dimension (d+1) with chiral bosonic fields taking values on d-, d+1-, and d+2-dimensional spheres. The geometric phases in the first two hierarchies are theta-terms. We emphasize a relation between theta-terms and quantum numbers of solitons.Comment: 10 pages, no figures, revtex, typos correcte

    Perturbative two- and three-loop coefficients from large beta Monte Carlo

    Full text link
    Perturbative coefficients for Wilson loops and the static quark self-energy are extracted from Monte Carlo simulations at large beta on finite volumes, where all the lattice momenta are large. The Monte Carlo results are in excellent agreement with perturbation theory through second order. New results for third order coefficients are reported. Twisted boundary conditions are used to eliminate zero modes and to suppress Z_3 tunneling.Comment: 6 pages, 5 figures. Contributions of Howard Trottier and Paul Mackenzie to Lattice '9
    corecore