We show that the perturbatively-improved gluon action for QCD, once it is
tadpole-improved, gives accurate results even with lattice spacings as large as
0.4~fm. {\em No\/} tuning of the couplings is required. Using this action and
lattice spacing, we obtain a static potential that is rotationally invariant to
within a few percent, the spin-averaged charmonium spectrum accurate to within
30--40~MeV, and scaling to within 5--10\%. We demonstrate that simulations on
coarse lattices are several orders of magnitude less costly than simulations
using current methods.Comment: 4 page