347 research outputs found

    Genotype List String: a grammar for describing HLA and KIR genotyping results in a text string

    Get PDF
    Knowledge of an individual's human leukocyte antigen (HLA) genotype is essential for modern medical genetics, and is crucial for hematopoietic stem cell and solid-organ transplantation. However, the high levels of polymorphism known for the HLA genes make it difficult to generate an HLA genotype that unambiguously identifies the alleles that are present at a given HLA locus in an individual. For the last 20 years, the histocompatibility and immunogenetics community has recorded this HLA genotyping ambiguity using allele codes developed by the National Marrow Donor Program (NMDP). While these allele codes may have been effective for recording an HLA genotyping result when initially developed, their use today results in increased ambiguity in an HLA genotype, and they are no longer suitable in the era of rapid allele discovery and ultra-high allele polymorphism. Here, we present a text string format capable of fully representing HLA genotyping results. This Genotype List (GL) String format is an extension of a proposed standard for reporting killer-cell immunoglobulin-like receptor (KIR) genotype data that can be applied to any genetic data that use a standard nomenclature for identifying variants. The GL String format uses a hierarchical set of operators to describe the relationships between alleles, lists of possible alleles, phased alleles, genotypes, lists of possible genotypes, and multilocus unphased genotypes, without losing typing information or increasing typing ambiguity. When used in concert with appropriate tools to create, exchange, and parse these strings, we anticipate that GL Strings will replace NMDP allele codes for reporting HLA genotypes

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Biosecurity and Vector Behaviour: Evaluating the Potential Threat Posed by Anglers and Canoeists as Pathways for the Spread of Invasive Non-Native Species and Pathogens

    Get PDF
    Invasive non-native species (INNS) endanger native biodiversity and are a major economic problem. The management of pathways to prevent their introduction and establishment is a key target in the Convention on Biological Diversity's Aichi biodiversity targets for 2020. Freshwater environments are particularly susceptible to invasions as they are exposed to multiple introduction pathways, including non-native fish stocking and the release of boat ballast water. Since many freshwater INNS and aquatic pathogens can survive for several days in damp environments, there is potential for transport between water catchments on the equipment used by recreational anglers and canoeists. To quantify this biosecurity risk, we conducted an online questionnaire with 960 anglers and 599 canoeists to investigate their locations of activity, equipment used, and how frequently equipment was cleaned and/or dried after use. Anglers were also asked about their use and disposal of live bait. Our results indicate that 64% of anglers and 78.5% of canoeists use their equipment/boat in more than one catchment within a fortnight, the survival time of many of the INNS and pathogens considered in this study and that 12% of anglers and 50% of canoeists do so without either cleaning or drying their kit between uses. Furthermore, 8% of anglers and 28% of canoeists had used their equipment overseas without cleaning or drying it after each use which could facilitate both the introduction and secondary spread of INNS in the UK. Our results provide a baseline against which to evaluate the effectiveness of future biosecurity awareness campaigns, and identify groups to target with biosecurity awareness information. Our results also indicate that the biosecurity practices of these groups must improve to reduce the likelihood of inadvertently spreading INNS and pathogens through these activities

    Expanding ART for Treatment and Prevention of HIV in South Africa: Estimated Cost and Cost-Effectiveness 2011-2050

    Get PDF
    Background: Antiretroviral Treatment (ART) significantly reduces HIV transmission. We conducted a cost-effectiveness analysis of the impact of expanded ART in South Africa. Methods: We model a best case scenario of 90% annual HIV testing coverage in adults 15-49 years old and four ART eligibility scenarios: CD4 count <200 cells/mm3(current practice), CD4 count <350, CD4 count <500, all CD4 levels. 2011-2050 outcomes include deaths, disability adjusted life years (DALYs), HIV infections, cost, and cost per DALY averted. Service and ART costs reflect South African data and international generic prices. ART reduces transmission by 92%. We conducted sensitivity analyses. Results: Expanding ART to CD4 count <350 cells/mm3prevents an estimated 265,000 (17%) and 1.3 million (15%) new HIV infections over 5 and 40 years, respectively. Cumulative deaths decline 15%, from 12.5 to 10.6 million; DALYs by 14% from 109 to 93 million over 40 years. Costs drop 504millionover5yearsand504 million over 5 years and 3.9 billion over 40 years with breakeven by 2013. Compared with the current scenario, expanding to <500 prevents an additional 585,000 and 3 million new HIV infections over 5 and 40 years, respectively. Expanding to all CD4 levels decreases HIV infections by 3.3 million (45%) and costs by 10billionover40years,withbreakevenby2023.By2050,usinghigherARTandmonitoringcosts,allCD4levelssaves10 billion over 40 years, with breakeven by 2023. By 2050, using higher ART and monitoring costs, all CD4 levels saves 0.6 billion versus current; other ART scenarios cost 9−194perDALYaverted.IfARTreducestransmissionby999-194 per DALY averted. If ART reduces transmission by 99%, savings from all CD4 levels reach 17.5 billion. Sensitivity analyses suggest that poor retention and predominant acute phase transmission reduce DALYs averted by 26% and savings by 7%. Conclusion: Increasing the provision of ART to <350 cells/mm3 may significantly reduce costs while reducing the HIV burden. Feasibility including HIV testing and ART uptake, retention, and adherence should be evaluated

    The host response to the probiotic Escherichia coli strain Nissle 1917: Specific up-regulation of the proinflammatory chemokine MCP-1

    Get PDF
    BACKGROUND: The use of live microorganisms to influence positively the course of intestinal disorders such as infectious diarrhea or chronic inflammatory conditions has recently gained increasing interest as a therapeutic alternative. In vitro and in vivo investigations have demonstrated that probiotic-host eukaryotic cell interactions evoke a large number of responses potentially responsible for the effects of probiotics. The aim of this study was to improve our understanding of the E. coli Nissle 1917-host interaction by analyzing the gene expression pattern initiated by this probiotic in human intestinal epithelial cells. METHODS: Gene expression profiles of Caco-2 cells treated with E. coli Nissle 1917 were analyzed with microarrays. A second human intestinal cell line and also pieces of small intestine from BALB/c mice were used to confirm regulatory data of selected genes by real-time RT-PCR and cytometric bead array (CBA) to detect secretion of corresponding proteins. RESULTS: Whole genome expression analysis revealed 126 genes specifically regulated after treatment of confluent Caco-2 cells with E. coli Nissle 1917. Among others, expression of genes encoding the proinflammatory molecules monocyte chemoattractant protein-1 ligand 2 (MCP-1), macrophage inflammatory protein-2 alpha (MIP-2α) and macrophage inflammatory protein-2 beta (MIP-2β) was increased up to 10 fold. Caco-2 cells cocultured with E. coli Nissle 1917 also secreted high amounts of MCP-1 protein. Elevated levels of MCP-1 and MIP-2α mRNA could be confirmed with Lovo cells. MCP-1 gene expression was also up-regulated in mouse intestinal tissue. CONCLUSION: Thus, probiotic E. coli Nissle 1917 specifically upregulates expression of proinflammatory genes and proteins in human and mouse intestinal epithelial cells

    Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance

    Get PDF
    The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source
    • …
    corecore