180 research outputs found

    Breaking the Status Quo of International Design Law: How the United States\u27 Design Law Frustrates the Purpose of the Hague Agreement

    Get PDF
    This Note explores how the United States\u27 substantive law frustrates the purpose of an international procedural agreement. The Hague Agreement Concerning the International Registration of Industrial Designs revolutionized the process of applying for industrial design protections on a global scale. The Hague Agreement\u27s purpose is to support easily and efficiently acquired industrial design protections in contracting parties to the agreement by simplifying procedures for obtaining protection. The United States-a country without a coherent and dedicated industrial design law-joined this agreement with effect in 2015, allowing designers around the world to easily apply for industrial design protections in the United States. If this seems counterintuitive, that is because it is. Because of this legal conundrum, the United States executes its responsibilities under the Hague Agreement by applying its design patent law to international industrial design applications. The United States\u27 imputation of design patent law onto industrial design applications firmly places it as an outlier among the rest of the world\u27s industrial design protection regimes. Not only are international designers unfamiliar with US design patent law, the added substantive requirements and associated ramifications of using a design patent standard to review industrial design applications confuses and impedes the international system. Thus, although global designers can now easily apply for design protections in the United States, these applications face challenges that are unknown to the rest of the world\u27s design regimes. Therefore, substantive harmonization shouldered by the contracting parties is the way forward for the Hague Agreement to better streamline the availability of design protections worldwide

    Brans-Dicke Theory and primordial black holes in Early Matter-Dominated Era

    Full text link
    We show that primordial black holes can be formed in the matter-dominated era with gravity described by the Brans-Dicke theory. Considering an early matter-dominated era between inflation and reheating, we found that the primordial black holes formed during that era evaporate at a quicker than those of early radiation-dominated era. Thus, in comparison with latter case, less number of primordial black holes could exist today. Again the constraints on primordial black hole formation tend towards the larger value than their radiation-dominated era counterparts indicating a significant enhancement in the formation of primordial black holes during the matter-dominaed era.Comment: 9 page

    Soft Photons in Hadron-Hadron Collisions: Synchrotron Radiation from the QCD Vacuum?

    Get PDF
    We discuss the production of soft photons in high energy hadron-hadron collisions. We present a model where quarks and antiquarks in the hadrons emit ``synchrotron light'' when being deflected by the chromomagnetic fields of the QCD vacuum, which we assume to have a nonperturbative structure. This gives a source of prompt soft photons with frequencies ω<=300MeV\omega <= 300 MeV in the c.m. system of the collision in addition to hadronic bremsstrahlung. In comparing the frequency spectrum and rate of ``synchrotron'' photons to experimental results we find some supporting evidence for their existence. We make an exclusive--inclusive connection argument to deduce from the ``synchrotron'' effect a behaviour of the neutron electric formfactor GEn(Q2)G_E^n(Q^2) proportional to (Q2)1/6(Q^2)^{1/6} for Q2<20fm2Q^2 < 20 fm^{-2}. We find this to be consistent with available data. In our view, soft photon production in high energy hadron-hadron and lepton-hadron collisions as well as the behaviour of electromagnetic hadron formfactors for low Q2Q^2 are thus sensitive probes of the nonperturbative structure of the QCD vacuum.Comment: Heidelberg preprint HD-THEP-94-36, 31 pages, LaTeX + ZJCITE.sty (included), 12 figures appended as uuencoded compressed ps-fil

    Gauged Inflation

    Get PDF
    We propose a model for cosmic inflation which is based on an effective description of strongly interacting, nonsupersymmetric matter within the framework of dynamical Abelian projection and centerization. The underlying gauge symmetry is assumed to be SU(N+1)SU(N+1) with N1N \gg 1. Appealing to a thermodynamical treatment, the ground-state structure of the model is classically determined by a potential for the inflaton field (dynamical monopole condensate) which allows for nontrivially BPS saturated and thereby stable solutions. For T<MPT<M_P this leads to decoupling of gravity from the inflaton dynamics. The ground state dynamics implies a heat capacity for the vacuum leading to inflation for temperatures comparable to the mass scale MM of the potential. The dynamics has an attractor property. In contrast to the usual slow-roll paradigm we have mHm\gg H during inflation. As a consequence, density perturbations generated from the inflaton are irrelevant for the formation of large-scale structure, and the model has to be supplemented with an inflaton independent mechanism for the generation of spatial curvature perturbations. Within a small fraction of the Hubble time inflation is terminated by a transition of the theory to its center symmetric phase. The spontaneously broken ZN+1Z_{N+1} symmetry stabilizes relic vector bosons in the epochs following inflation. These heavy relics contribute to the cold dark matter of the universe and potentially originate the UHECRs beyond the GZK bound.Comment: 23 pages, 4 figures, subsection added, revision of text, to app. in PR

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Biomedical and therapeutic applications of biosurfactants

    Get PDF
    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases and as therapeutic agents due to their antibacterial, antifungal and antiviral activities. Furthermore, their role as anti-adhesive agents against several pathogens illustrate their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction of a large number of hospital infections without the use of synthetic drugs and chemicals. Biomedical and therapeutic perspectives of biosurfactants applications are presented and discussed in this chapter

    Mucosal Expression of Type 2 and Type 17 Immune Response Genes Distinguishes Ulcerative Colitis From Colon-Only Crohn's Disease in Treatment-Naive Pediatric Patients

    Get PDF
    Background & Aims There is controversy regarding the role of the type 2 immune response in the pathogenesis of ulcerative colitis (UC)?few data are available from treatment-naive patients. We investigated whether genes associated with a type 2 immune response in the intestinal mucosa are up-regulated in treatment-naive pediatric patients with UC compared with patients with Crohn's disease (CD)-associated colitis or without inflammatory bowel disease (IBD), and whether expression levels are associated with clinical outcomes. Methods We used a real-time reverse-transcription quantitative polymerase chain reaction array to analyze messenger RNA (mRNA) expression patterns in rectal mucosal samples from 138 treatment-naive pediatric patients with IBD and macroscopic rectal disease, as well as those from 49 children without IBD (controls), enrolled in a multicenter prospective observational study from 2008 to 2012. Results were validated in real-time reverse-transcription quantitative polymerase chain reaction analyses of rectal RNA from an independent cohort of 34 pediatric patients with IBD and macroscopic rectal disease and 17 controls from Cincinnati Children's Hospital Medical Center. Results We measured significant increases in mRNAs associated with a type 2 immune response (interleukin [IL]5 gene, IL13, and IL13RA2) and a type 17 immune response (IL17A and IL23) in mucosal samples from patients with UC compared with patients with colon-only CD. In a regression model, increased expression of IL5 and IL17A mRNAs distinguished patients with UC from patients with colon-only CD (P =.001; area under the receiver operating characteristic curve, 0.72). We identified a gene expression pattern in rectal tissues of patients with UC, characterized by detection of IL13 mRNA, that predicted clinical response to therapy after 6 months (odds ratio [OR], 6.469; 95% confidence interval [CI], 1.553?26.94), clinical response after 12 months (OR, 6.125; 95% CI, 1.330?28.22), and remission after 12 months (OR, 5.333; 95% CI, 1.132?25.12). Conclusions In an analysis of rectal tissues from treatment-naive pediatric patients with IBD, we observed activation of a type 2 immune response during the early course of UC. We were able to distinguish patients with UC from those with colon-only CD based on increased mucosal expression of genes that mediate type 2 and type 17 immune responses. Increased expression at diagnosis of genes that mediate a type 2 immune response is associated with response to therapy and remission in pediatric patients with UC
    corecore