7,121 research outputs found

    Electrical spin protection and manipulation via gate-locked spin-orbit fields

    Full text link
    The spin-orbit (SO) interaction couples electron spin and momentum via a relativistic, effective magnetic field. While conveniently facilitating coherent spin manipulation in semiconductors, the SO interaction also inherently causes spin relaxation. A unique situation arises when the Rashba and Dresselhaus SO fields are matched, strongly protecting spins from relaxation, as recently demonstrated. Quantum computation and spintronics devices such as the paradigmatic spin transistor could vastly benefit if such spin protection could be expanded from a single point into a broad range accessible with in-situ gate-control, making possible tunable SO rotations under protection from relaxation. Here, we demonstrate broad, independent control of all relevant SO fields in GaAs quantum wells, allowing us to tune the Rashba and Dresselhaus SO fields while keeping both locked to each other using gate voltages. Thus, we can electrically control and simultaneously protect the spin. Our experiments employ quantum interference corrections to electrical conductivity as a sensitive probe of SO coupling. Finally, we combine transport data with numerical SO simulations to precisely quantify all SO terms.Comment: 5 pages, 4 figures (color), plus supplementary information 18 pages, 8 figures (color) as ancillary arXiv pd

    An efficient user-oriented method for calculating compressible flow in an about three-dimensional inlets

    Get PDF
    A panel method is used to calculate incompressible flow about arbitrary three-dimensional inlets with or without centerbodies for four fundamental flow conditions: unit onset flows parallel to each of the coordinate axes plus static operation. The computing time is scarcely longer than for a single solution. A linear superposition of these solutions quite rigorously gives incompressible flow about the inlet for any angle of attack, angle of yaw, and mass flow rate. Compressibility is accounted for by applying a well-proven correction to the incompressible flow. Since the computing times for the combination and the compressibility correction are small, flows at a large number of inlet operating conditions are obtained rather cheaply. Geometric input is aided by an automatic generating program. A number of graphical output features are provided to aid the user, including surface streamline tracing and automatic generation of curves of curves of constant pressure, Mach number, and flow inclination at selected inlet cross sections. The inlet method and use of the program are described. Illustrative results are presented

    Phonon driven spin distribution due to the spin-Seebeck effect

    Full text link
    Here we report on measurements of the spin-Seebeck effect of GaMnAs over an extended temperature range alongside the thermal conductivity, specific heat, magnetization, and thermoelectric power. The amplitude of the spin-Seebeck effect in GaMnAs scales with the thermal conductivity of the GaAs substrate and the phonon-drag contribution to the thermoelectric power of the GaMnAs, demonstrating that phonons drive the spin redistribution. A phenomenological model involving phonon-magnon drag explains the spatial and temperature dependence of the measured spin distribution.Comment: 12 pages, 3 figure

    A three-dimensional scalar field theory model of center vortices and its relation to k-string tensions

    Full text link
    In d=3 SU(N) gauge theory, we study a scalar field theory model of center vortices that furnishes an approach to the determination of so-called k-string tensions. This model is constructed from string-like quantum solitons introduced previously, and exploits the well-known relation between string partition functions and scalar field theories in d=3. Center vortices corresponding to magnetic flux J (in units of 2\pi /N) are composites of J elementary J=1 constituent vortices that come in N-1 types, with repulsion between like constituents and attraction between unlike constituents. The scalar field theory involves N scalar fields \phi_i (one of which is eliminated) that can merge, dissociate, and recombine while conserving flux mod N. The properties of these fields are deduced directly from the corresponding gauge-theory quantum solitons. Every vacuum Feynman graph of the theory corresponds to a real-space configuration of center vortices. We study qualitatively the problem of k-string tensions at large N, whose solution is far from obvious in center-vortex language. We construct a simplified dynamical picture of constituent-vortex merging, dissociation, and recombination, which allows in principle for the determination of vortex areal densities and k-string tensions. This picture involves point-like "molecules" (cross-sections of center vortices) made of constituent "atoms" that combine and disassociate dynamically in a d=2 test plane . The vortices evolve in a Euclidean "time" which is the location of the test plane along an axis perpendicular to the plane. A simple approximation to the molecular dynamics is compatible with k-string tensions that are linear in k for k<< N, as naively expected.Comment: 21 pages; RevTeX4; 4 .eps figure

    Optimal probabilistic cloning and purification of quantum states

    Full text link
    We investigate the probabilistic cloning and purification of quantum states. The performance of these probabilistic operations is quantified by the average fidelity between the ideal and actual output states. We provide a simple formula for the maximal achievable average fidelity and we explictly show how to construct a probabilistic operation that achieves this fidelity. We illustrate our method on several examples such as the phase covariant cloning of qubits, cloning of coherent states, and purification of qubits transmitted via depolarizing channel and amplitude damping channel. Our examples reveal that the probabilistic cloner may yield higher fidelity than the best deterministic cloner even when the states that should be cloned are linearly dependent and are drawn from a continuous set.Comment: 9 pages, 2 figure

    Reduced tillage in corn production

    Get PDF
    Caption title."Corn Belt Branch, Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, Columbia, Missouri and the Agricultural Engineering Department of the Missouri Agricultural Experiment Station Cooperating"--Page [2]

    Oscillatory Spin Polarization and Magneto-Optic Kerr Effect in Fe3O4 Thin Films on GaAs(001)

    Full text link
    The spin dependent properties of epitaxial Fe3O4 thin films on GaAs(001) are studied by the ferromagnetic proximity polarization (FPP) effect and magneto-optic Kerr effect (MOKE). Both FPP and MOKE show oscillations with respect to Fe3O4 film thickness, and the oscillations are large enough to induce repeated sign reversals. We attribute the oscillatory behavior to spin-polarized quantum well states forming in the Fe3O4 film. Quantum confinement of the t2g states near the Fermi level provides an explanation for the similar thickness dependences of the FPP and MOKE oscillations.Comment: to appear in Phys. Rev. Let

    Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces

    Full text link
    We observe the shift of Rydberg levels of rubidium close to a copper surface when atomic clouds are repeatedly deposited on it. We measure transition frequencies of rubidium to S and D Rydberg states with principal quantum numbers n between 31 and 48 using the technique of electromagnetically induced transparency. The spectroscopic measurement shows a strong increase of electric fields towards the surface that evolves with the deposition of atoms. Starting with a clean surface, we measure the evolution of electrostatic fields in the range between 30 and 300 \mum from the surface. We find that after the deposition of a few hundred atomic clouds, each containing ~10^6 atoms, the field of adsorbates reaches 1 V/cm for a distance of 30 \mum from the surface. This evolution of the electrostatic field sets serious limitations on cavity QED experiments proposed for Rydberg atoms on atom chips.Comment: 4 pages, 3 figures Submitted to Phys. Rev.

    Stretchable persistent spin helices in GaAs quantum wells

    Get PDF
    The Rashba and Dresselhaus spin-orbit (SO) interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly-oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α\alpha and Dresselhaus β\beta couplings to equal fixed\it{fixed} strengths α=β\alpha=\beta, the total SO field becomes unidirectional thus rendering the electron spins immune to dephasing due to momentum scattering. A robust persistent spin helix (PSH) has already been experimentally realized at this singular point α=β\alpha=\beta. Here we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with a technique that allows for independent electrical control over the SO couplings via top gate voltage VTV_T and back gate voltage VBV_B. We demonstrate for the first time the gate control of β\beta and the continuouslocking\it{continuous\,locking} of the SO fields at α=β\alpha=\beta, i.e., we are able to vary both α\alpha and β\beta controllably and continuously with VTV_T and VBV_B, while keeping them locked at equal strengths. This makes possible a new concept: "stretchable PSHs", i.e., helical spin patterns with continuously variable pitches PP over a wide parameter range. The extracted spin-diffusion lengths and decay times as a function of α/β\alpha/\beta show a significant enhancement near α/β=1\alpha/\beta=1. Since within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication 825\sim 8 - 25 μ\mum between solid-state spin qubits.Comment: 5 color figures, with supplementary info available on arXiv. arXiv admin note: substantial text overlap with arXiv:1403.351
    corecore