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The Rashba and Dresselhaus spin-orbit (SO) interactions in 2D electron gases act as effective magnetic
fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary
precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and
experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β
couplings to equal fixed strengths α ¼ β, the total SO field becomes unidirectional, thus rendering the
electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH), i.e., a
helical spin-density wave excitation with constant pitch P ¼ 2π=Q, Q ¼ 4mα=ℏ2, has already been
experimentally realized at this singular point α ¼ β, enhancing the spin lifetime by up to 2 orders of
magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched
SO fields together with independent electrical control over the SO couplings via top gate voltage VT and
back gate voltage VB to extract all SO couplings when combined with detailed numerical simulations. We
demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO
fields at α ¼ β; i.e., we are able to vary both α and β controllably and continuously with VT and VB, while
keeping them locked at equal strengths. This makes possible a new concept: “stretchable PSHs,” i.e., helical
spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e.,
gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the
symmetry point α ¼ β, thus offering an important advantage over other methods. This protection is limited
mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes
spin decay at higher electron densities. We quantify the cubic term, and find it to be sufficiently weak so
that the extracted spin-diffusion lengths and decay times show a significant enhancement near α ¼ β. Since
within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for
spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much
heralded long-distance communication∼8–25 μm between solid-state spin qubits, where the spin diffusion
length for α ≠ β is an order of magnitude smaller.
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The inextricable coupling between the electron spatial and
spin degrees of freedom—the spin-orbit (SO) interaction—
underlies many fundamental phenomena such as the spin
Hall effects—quantum and anomalous [1]—and plays a
crucial role in newly discovered quantum materials hosting

FIG. 1. Stretchable PSHs. Illustration of spin helices at different
values of α¼β accessible in the measurements. The position xþ for
one 2π rotation (dashed curve) is changing for the gate-locked
regime α¼β. The gray box highlights how the spin rotation can be
controlled (in situ) at fixed position∼4.8 μmby∼π=2 over the same
rangeofα¼β. The x̂þ∥½110� and x̂−∥½1̄10� axesdefine the 2Dplane.
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Majorana [2] and Weyl fermions [3]. In nanostructures, the
SO coupling strength can be varied via gate electrodes [4,5].
As recently demonstrated [6], this enables controlled spin
modulation [7] of charge currents in nonmagnetic (quasibal-
listic) spin transistors.
The SO coupling in a GaAs quantum well has two

dominant contributions: the Rashba [8] and the Dresselhaus
[9] effects, arising from the breaking of the structural
and crystal inversion symmetries, respectively. When the
Rashba α and Dresselhaus β SO couplings match at
α ¼ β [10,11], the direction of the combined Rashba-
Dresselhaus field becomes momentum independent, thus
suppressing D’yakonov-Perel spin-flip processes, provided
that the cubic Dresselhaus term be small. The significantly
enhanced spin lifetime at α ¼ β enables nonballistic spin
transistors and persistent spin helices (PSHs) [10,11].
However, despite substantial efforts, so far this symmetry
point has been achieved only at isolated points with finely
tuned system parameters [12–14], which is too difficult to
be reliably attained on demand as required for a useful
technology.
Stretchable persistent spin helices.—Here, we overcome

this outstanding obstacle by (i) using a technique that
allows independent control of the SO couplings via a top
gate voltage VT and a back gate voltage VB while
(ii) simultaneously measuring the suppression of weak
antilocalization (WAL) in an external magnetic field as a
sensitive probe for matched SO couplings. While gate
tuning of the renormalized Dresselhaus coefficient β was
already theoretically described in 1994 [15], we demon-
strate this for the first time here in an experiment, and
employ this tunability to show robust continuous locking of
the Rashba and Dresselhaus couplings at αðVT; VBÞ ¼
βðVT; VBÞ over a wide range of densities n, i.e., a
“symmetry line” (not a point) in the (VT , VB) plane.
This allows us to introduce the concept of the “stretchable
persistent spin helix,” see Fig. 1, with spin density
sxþ ∼ sinðQxþÞ, sx− ¼ 0, and sz ∼ cosðQxþÞ and variable
pitch P ¼ 2π=Q, Q ¼ 4mα=ℏ2. The stretchable PSH
makes possible gate control of the spin precession
over long distances due to strong protection from spin
decay by up to 2 orders of magnitude enhanced
spin lifetimes at the symmetry point α ¼ β—without
requiring in-plane electric fields to induce drift [16],
and without relying on micron-width channels to suppress
decay [17].
Long-distance spin communication.—Within the range

of the continuously matched-locked SO couplings α ¼ β,
quantum transport in the well is diffusive for charge (2D)
while essentially ballistic (1D) for spins [see Supplemental
Material (SM), Sec. V [18]]. A stretchable PSH could thus
be used to coherently couple, e.g., spin qubits over
unprecedented long distances. Figure 1 illustrates how
spin information can be conveyed between spins via a
stretchable PSH. These stretchy waves can be excited upon

injection of spin polarization; see, e.g., Refs. [12,13]. Other
spin communication modes can be envisaged with this
setup. The distance is limited mainly by the deviation
from α ¼ β and by the cubic Dresselhaus term, which is
small in this range, as we quantify later on, and leads to spin
decay with spin-diffusion lengths λeff ∼ 8–25 μm over
which the spin dephases by 1 rad. Note that this type of
spin manipulation and spin transfer is not possible for a
helix with α ≠ β, since λeff quickly drops below the helix
pitch as the SO couplings are deviating from the sym-
metry point.
The full electrical control of the SO couplings demon-

strated in our 9.3-nm-wide quantum well can tune from
α ¼ β ¼ 5 meVÅ to 4 meVÅ, thus enabling stretchable
PSHs with pitches P stretching from 3.5 to 4.4 μm; see
Fig. 1. Within the shortest spin-diffusion length λeff ∼ 8 μm
for our 9.3-nm well, controlled spin rotations by an angle
θ ¼ Qxþ ¼ 2πxþ=P can be performed under spin protec-
tion on any spin sitting at a position x along the stretchable
PSH by varying P in the range above. For example, a spin
at x ∼ 4.8 μm can be rotated byΔθ ∼ π=2 as P varies in the
range above; see gray box shading in Fig. 1. Thus,
stretchable helices could provide a platform for long-
distance spin communication.
Additional results.—WAL is also used to identify other

regimes such as the Dresselhaus regime α ¼ 0 in a more
symmetrically doped sample. Combined with numerical
simulations, we extract the SO couplings α and β, the
bulk Dresselhaus parameter γ, the spin-diffusion lengths,
and spin-relaxation times over a wide range of system
parameters. We also quantify the detrimental effects
of the third harmonic of the cubic Dresselhaus term, which
mainly limits spin protection. Interestingly, our spin-
diffusion lengths and spin-relaxation times are significantly
enhanced within the locked α ¼ β range, thus attesting that
our proposed setup offers a promising route for spin
protection and manipulation.
In what follows, we first explain tuning of the Rashba

coupling, then the essential density dependence of the
Dresselhaus coupling β that enables the continuous locking
of the SO fields, how it also leads to spin decay at higher
densities, followed by the relevant weak-localization–
weak-antilocalization (WL-WAL) detection scheme, mea-
surements, and simulations. A full account of our approach,
including additional data and details of the model and
simulations, is presented in the Appendix and the SM [18].
Controlling the Rashba coupling α.—The Rashba coef-

ficient [8] α can be tuned with the wafer and doping profile
[12] as well as in situ using gate voltages [4,5] at constant
density n and thus independent of the Dresselhaus term; see
below. A change of top gate voltage VT can be compen-
sated by an appropriate, opposing change of back gate
voltage VB [see Fig. 2(a)] to keep n fixed [19,20] while
changing the gate-induced electric field δEZ in the quantum
well, where z⊥2D plane. Another Rashba term due to
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donor electric fields [21,22] is negligible in our structures;
see SM [18].
Linear and cubic Dresselhaus terms in 2D.—Because of

the well confinement along the z direction (growth), the
cubic-in-momentum bulk (3D) Dresselhaus SO interaction
gives rise to, after the projection into the lowest quantum
well subband eigenstates, distinct terms that are linear and
cubic in k, the 2D electron wave vector. The linear-in-k
term has a coefficient β1 ¼ γhk2zi and turns out practically
independent of density in the parameter range of interest
here. The cubic-in-k term, on the other hand, is density
dependent and has yet two components with distinct
angular symmetries: (i) the first-harmonic contribution
proportional to sinϕ and cosϕ and (ii) the third-harmonic
contribution proportional to sin 3ϕ and cos 3ϕ; here, ϕ is
the polar angle in 2D between k and the [100] direction
(see SM [18]). Interestingly, the first-harmonic contribution
with coefficient β3 has the same angular symmetry as both
the linear-in-k Dresselhaus β1 term (see Refs. [15,23]) and

the Rashba α term. An additional term with the same
form—the interface Dresselhaus term [24]—could also
play a role; see SM [18].
To a very good approximation, the coefficient β3≃

γk2F=4, where the Fermi vector kF ≃ ffiffiffiffiffiffiffiffi
2πn

p
and n is the

carrier density of the 2D gas. This neglects the tiny angular
anisotropy in the Fermi wave vector due to the competition
between the Rashba and Dresselhaus effects (especially in
GaAs wells). Note that by approximating β3 ≃ γπn=2, both
the first-harmonic and the third-harmonic parts of the
cubic-in-k Dresselhaus term actually become linear in k
(see SM for details [18]) and, more importantly, become
density dependent. We can now group the linear-in-k
Dresselhaus term β1 together with the first-harmonic
contribution β3 into a single renormalized Dresselhaus
term by defining β ¼ β1 − β3. It is this density-dependent
renormalized coefficient β that can be tuned with a gate
voltage to match the Rashba α coupling continuously. This
matching leads to a k-independent spinor (or, equivalently,
to a k-independent effective SO field), whose direction is
immune to momentum scattering. In this way we achieve
independent, continuous control of the Rashba and
Dresselhaus terms by using top gate and back gate voltages.
This is an unprecedented tunability of the SO terms within
a single sample.
Spin decay at higher densities.—The strength of the

third-harmonic contribution of the Dresselhaus term is also
described by the coefficient β3. This term, however, is
detrimental to spin protection as it breaks the angular
symmetry of the other linear SO terms and makes the spinor
k dependent and susceptible to in-plane momentum scat-
tering, even for matched couplings α ¼ β. As we show, the
detrimental effect of the third-harmonic contribution does
not prevent our attaining the continuous locking over a
relevant wide range of electron densities.
Gate-tunable range of the Dresselhaus coupling β.—For

the narrow quantumwells we use here, β1 is essentially gate
independent since the wave function spreads over the full
width of the well. This also implies hk2zi ≪ ðπ=WÞ2 (the
infinite well limit), see Fig. 3(d), due to wave function
penetration into the finite barriers. Thus, a change of
density by a factor of ∼2.5 changes β3=β1 ¼ πn=h2k2zi
by the same factor, resulting in a gate-tunable range of
0.08≲ β3=β1 ≲ 0.2. In addition, quantum wells of width
W ¼ 8, 9.3, 11, and 13 nm were used [12,25], resulting in a
change of β1 by roughly a factor of 2.
Detection scheme for matched SO couplings.—WAL is a

well-established signature of SO coupling in magneto-
conductance σðBZÞ [15,23,26–29] exhibiting a local maxi-
mum at zero field. In the α ¼ �β regime, the resulting
internal SO field is uniaxial, and spin rotations commute
and are undone along time-reversal loops. Therefore, WAL
is suppressed and the effectively spinless situation display-
ing weak localization [i.e., σðBZÞ exhibiting a local mini-
mum at BZ ¼ 0] is restored [10,11,14,23]. Away from the
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FIG. 2. Weak localization (WL) as an α ¼ β detector, gate
control of Rashba α at constant density. (a) Measured charge
density n (color) versus top gate voltage VT and back gate voltage
VB (9.3-nm well). Contours of constant density ð3.5–7.5Þ ×
1011 cm−2 are shown. Inset: Optical micrograph of typical Hall
bar, with contacts (yellow), gate (center), and mesa (black lines).
(b) Normalized longitudinal conductivity Δσ=σ0 ¼ ½σðBZÞ −
σð0Þ�=σð0Þ versus BZ⊥2D plane. Curves for gate configurations
1–7 along constant n ¼ 4.5 × 1011 cm−2 are shown (offset
vertically), also labeled in (a) and (c). (c) Simulated Rashba α
and Dresselhaus β coefficients (see text) against gate-induced
field change δEZ, shown for constant n ¼ 4.5 × 1011 cm−2. The
δEZ axis—decreasing from left to right—corresponds exactly to
the VB abscissa of (a) for a covarying VT , such that n ¼ 4.5 ×
1011 cm−2 constant. Sketches of the well potential at 1, 4, and 6
illustrate the change of α with δEZ. Note that αðδEZ ¼ 0Þ ≠ 0
since the external E field (see SM [18]) is not zero at δEZ ¼ 0.
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matched regime, the SO field is not uniaxial, spin rotations
do not commute, and trajectories in time-reversal loops
interfere destructively upon averaging [26] due to the SO
phases picked up along the loops, thus leading to WAL.
Hence, this suppression is a sensitive detector for α ¼ �β.
At high β3, this detection scheme becomes approximate,
giving α ¼ �β [14]. We note that the WL dip—often used
to determine phase coherence—sensitively depends on the
SO coupling [e.g., curves 3–6 in Fig. 2(b)], even before
WAL appears. Negligence of SO coupling could thus lead
to spurious or saturating coherence times. At higher
temperatures, when quantum coherence is lost, this detec-
tion scheme becomes inoperable, while it is expected that
the mechanism for tuning both Rashba and effective
Dresselhaus coefficients continues to function with only

small corrections [24,30] even up to room temperature.
Also, note that Shubnikov–de Haas oscillations do not
show any spin-orbit splitting here (see SM [18]) given the
strength of SO coupling in GaAs, making it clear that
the quantum corrections in WAL and their suppression at
the symmetry point present a very sensitive detector for SO
coupling.
Continuous locking α ¼ β.—We proceed to demonstrate

gate locking of the SO couplings α, β. Figure 2(b) displays
σðBZÞ of the 9.3-nm well for top gate and back gate
configurations labeled 1–7, all lying on a contour of
constant density; see Fig. 2(a). Along this contour, β is
held fixed since the density is constant (β1 is essentially
gate independent), while α is changing as the gate voltages
are modifying the electric field δEZ perpendicular to the
quantum well. Across these gate configurations, the con-
ductance shows a transition from WAL (configuration 1
and 2) to WL (4 and 5) back to WAL (7). Selecting the most
pronouncedWL curve allows us to determine the symmetry
point α ¼ β. This scheme is repeated for a number of
densities, varying n by a factor of 2, yielding the symmetry
point α ¼ β for each density n [see Fig. 3(a), blue markers],
thus defining a symmetry line in the ðVT; VBÞ plane. Along
this line, β is changingwith density, as previously described,
and α follows β, remaining “continuously” locked at α ¼ β.
As mentioned earlier, this is a very interesting finding,
as it should allow the creation of persistent spin helices with
gate-controllable pitches, as illustrated in Fig. 1.
Simulations and fitting of γ.—Self-consistent calcula-

tions combined with the transport data can deliver all SO
parameters. The numerical simulations [31] (see Appendix
and SM [18]) can accurately calculate α and hk2zi. This
leaves only one fit parameter, γ, the bulk Dresselhaus
coefficient, which can now be extracted from fits to the
density dependence of the symmetry point, see solid blue
line in Fig. 3(a), giving excellent agreement with the data
(blue markers). This procedure can be repeated for a set of
wafers with varying quantum well width and thus varying
β1. This shifts the symmetry point α ¼ β, producing nearly
parallel lines, as indicated with colors in Fig. 3(a) corre-
sponding to the various wafers as labeled. As shown,
locking α ¼ β over a broad range is achieved in all wafers.
Since gate voltages can be tuned continuously, any and all
points on the symmetry lines α ¼ β can be reached. Again
performing fits over the density dependence of the sym-
metry point for each well width, we obtain very good
agreement, see Fig. 3(a), and extract γ ¼ 11.6� 1 eVÅ3

consistently for all wells [Fig. 3(c)]. We emphasize that γ is
notoriously difficult to calculate and measure [28,29,32];
the value we report here agrees well with recent studies
[13,32,33]. Obtaining consistent values over wide ranges of
densities and several wafers with varying well widths
provides a robust method to extract γ.
Beyond γ, the simulations reveal important information

about the gate tuning of the SO parameters. The Rashba
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coefficient is modeled as α ¼ αgþd þ αw þ αe in the
simulation, with gate and doping term αgþd, quantum well
structure term αw, and Hartree term αe. Along a contour of
constant density, the simulations show that mainly αgþd and
αw are modified, while αe and β remain constant; see
Fig. 2(c). The density dependence for locked α ¼ β, on the
other hand, shows that while β1 is nearly constant, β3 is
linearly increasing with n, thus reducing β ¼ β1 − β3; see
Fig. 3(b). Hence, to keep α ¼ β locked, α has to be reduced
correspondingly. The Hartree term αe, however, increases
for growing n. Thus, on the α ¼ β line, the other α terms—
mainly the gate-dependent αgþd—are strongly reduced,
maintaining locked α ¼ β, as shown in Fig. 3(b). We
emphasize that neglecting the density dependence of β3
and fixing α ¼ β1 þ const results in a line with slope
indicated by the blue dashed line in Fig. 3(a), which is
clearly inconsistent with the data. Thus, the density-
dependent β3 enabling gate tunability of the Dresselhaus
term is crucial here.
Dresselhaus regime.—We now show that α can be tuned

through β and through zero in a more symmetrically doped
wafer, opening the Dresselhaus regime β ≫ α. We intro-
duce the magnetic field BSO, where the magnetoconduc-
tance exhibits minima at BZ1 ≈ −BZ2. These minima
describe the crossover between WAL and WL, where the
Aharonov-Bohm dephasing length and the SO diffusion
length are comparable. Beyond the WAL-WL-WAL tran-
sition [Fig. 4(b), upper panel], BSO is seen to peak and
decrease again (dashed curve). The gate voltages with
maximal BSO are added to Fig. 4(a) for several densities
(red markers). We surmise that these points mark α ≈ 0:
BSO signifies the crossover from WL to WAL-like con-
ductance, thus defining an empirical measure for the effects
of SO coupling (larger BSO, stronger effects). For α ¼ 0, the
full effect of β on the conductance becomes apparent
without cancellation from α, giving a maximal BSO.
Indeed, the simulated α ¼ 0 curve [dashed red line in
Fig. 4(a)] cuts through the experimental points, also
reflected in Fig. 4(c) by a good match with the simulated
α ¼ 0 crossing point (red arrow).
Diverging spin-orbit lengths.—For a comparison of

experiment and simulation, we convert the empirical BSO

to a “magnetic length” λSO ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2eBSO

p
, which we later

on interpret as a spin-diffusion length, where e > 0 is the
electron charge and the factor of 2 accounts for time-
reversed pairs of closed trajectories. We also introduce the
ballistic SO lengths λ� ¼ ℏ2=ð2m�jα� βjÞ. These lengths
correspond to a spin rotation of 1 rad, as the electrons travel
along x̂þ and x̂−, respectively, with spins initially aligned
perpendicular to the corresponding SO field [e.g., for an
electron moving along the x̂þ, its spin should point along
x̂þ or ẑ so spin precession can occur; see SM, Eq. (S20), for
an expression of the SO field [18]]. For α ¼ þβ,
λ− diverges (no precession, indicating that an electron
traveling along x̂− does not precess) while λþ is finite, and

vice versa for α ¼ −β. An in-plane rotation of the PSH by a
fixed angle π=2 from α ¼ þβ to α ¼ −β was recently
demonstrated [34].
Figure 5 shows the theoretical spin diffusion length λeff

(see Appendix) and the ballistic λ�, together with the
experimental λSO, all agreeing remarkably well. Since at
α ¼ β spin transport is ballistic despite charge diffusion,
λ− and its diffusive counterpart λeff (small β3) are essentially
equivalent, as shown in SM [18]. The enhanced λSO around
α=β ¼ 1 corresponds to an increased spin relaxation
time τSO ¼ λ2SO=ð2DÞ. Note that maxðλþ; λ−Þ quantifies the
deviation from the uniaxial SO field away from α ¼ β, and
thus the extent to which spin rotations are not undone in a
closed trajectory due to the non-Abelian nature of spin
rotations around noncollinear axes. This leads to WAL, a
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panel), shifted vertically for clarity. Each brown or blue marker in
(a) corresponds to a trace in (b), as labeled by numerals or letters.
BSO is indicated as a guide for the eye by black dashed curves for
negative BZ. BSO increases and peaks (indicating α ¼ 0) before
decreasing again (upper panel). Broken spin symmetry regime
(lower panel): WAL is no longer suppressed here due to
symmetry breaking from the cubic term at large n. Still, α ≈ β
can be identified with the narrowest WAL peak. (c) Simulation of
α and β along n ¼ 6 × 1011 cm−2. α traverses both β (black
arrow) and for smaller δEZ also zero (red arrow).
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finite BSO, and λSO ≃maxðλþ; λ−Þ, as observed (see Fig. 5).
Unlike the corresponding time scales, the SO lengths are only
weakly dependent on density and mobility when plotted
against α=β, allowing a comparison of various densities.
The third-harmonic contribution of cubic-in-k term

causes spin relaxation even at α ¼ β and becomes visible
at large densities: WAL is present in all traces and through
α ¼ β [Fig. 4(b), lower panel], because the SO field can no
longer be made uniaxial, thus breaking spin symmetry and
reviving WAL. A partial symmetry restoration is still
apparent, where—in contrast to the α ¼ 0 case—a minimal
BSO is reached (dashed curves) consistent with α ¼ β [gray
markers Fig. 4(a) at large n]. We include the cubic β3 in the
spin-relaxation time τeff (see Appendix), shown in the inset
of Fig. 5 for two densities, finding good agreement with the
experimental τSO ¼ λ2SO=ð2DÞ, where D is the diffusion
constant. Over the whole locked regime of Fig. 3(b), WAL
is absent, and τSO is enhanced between 1 and 2 orders of
magnitude compared to α ¼ 0. Finally, the coherence
length Lφ sets an upper limit for the visibility of SO
effects: WAL is suppressed for λeff ≫ Lφ, setting the width
of the WAL-WL-WAL transition (see SM [18]).
Final remarks and outlook.—This work is laying the

foundation for a new generation of experiments benefiting
from unprecedented command over SO coupling in

semiconductor nanostructures such as quantum wires,
quantum dots, and electron spin qubits. Moreover, our
work relaxes the stringency (i.e., the “fine-tuning”) of the
α ¼ β symmetry condition at a particular singular point
(gate) by introducing a “continuous locking” of the SO
couplings αðVT; VBÞ ¼ βðVT; VBÞ over a wide range of
voltages, which should enable new experiments exciting
persistent spin helices with variable pitches in GaAs wells
[12,13], i.e., stretchable PSHs. Further, this concept is also
applicable to a range of other III-V semiconductors in
various suitable configurations. Another possibility is the
generation of a Skyrmion lattice (crossed spin helices) with
variable lattice constants, as recently proposed in Ref. [35].
Finally, we stress that within the continuously locked

regime of SO couplings we demonstrate in our study,
SO-coupled quantum transport in our samples shows a very
distinctive feature: it is diffusive (2D) for charge while
ballistic (1D) for spins, thus providing a unique setting for
coherent spin control. This ultimately adds a new function-
ality to the nonballistic spin transistor of Ref. [10]; i.e., it can
nowbemade to operate as the ideal (ballistic)Datta-Das spin
transistor—but in a realistic 2D diffusive system, with yet
controlled spin rotations protected from spin decay.
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APPENDIX: MATERIALS AND METHODS

1. GaAs quantum well materials

The wells are grown on an n-doped substrate (for details
see SM [18]) and fabricated into Hall bar structures [see
inset of Fig. 2(a)] using standard photolithographic meth-
ods. The 2D gas is contacted by thermally annealed
GeAu=Pt Ohmic contacts, optimized for a low contact
resistance while maintaining high back gate tunability (low
leakage currents) and avoiding short circuits to the back
gate. On one segment of the Hall bar, a Ti=Au top gate with

-

FIG. 5. Experimental and theoretical SO lengths and SO times.
Experimental λSO ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2eBSO

p
(markers, densities as labeled,

in units of 1011 cm−2) as a function of the dimensionless ratio
α=β (from SO simulation). The ballistic λ� (blue and red dashes)
and effective λeff (black dashed curve) are only weakly n
dependent (small β3) when plotted against α=β. Thus, curves
for only one density (n ¼ 6 × 1011 cm−2) are shown. The
experimental uncertainty on λSO is captured by the spread given
by the three slightly different densities. The coherence length
Lφ ≈ 7 μm is added for illustration (obtained from WL curves),
setting the visibility of SO effects on the conductance and thus the
width of the WAL-WL-WAL transition. Inset: Experimental spin
relaxation time τSO ¼ λ2SO=ð2DÞ (circles) as a function of α=β for
two densities as indicated. Theory curves τeff (dashed) now
include the symmetry-breaking third-harmonic term, preventing
divergence at α=β ¼ 1, while λeff (main panel) does not.

FLORIAN DETTWILER et al. PHYS. REV. X 7, 031010 (2017)

031010-6



dimensions of 300 × 100 μm2 is deposited. The average
gate-induced E-field change in the well is defined as
δEZ ¼ 1=2ðVT=dT − VB=dBÞ, with effective distance
dT=B from the well to the top gate or back gate, respectively,
extracted using a capacitor model, consistent with the full
quantum description (see SM [18]). Contours of constant
density follow δVT=dT ¼ −δVB=dB. Deviations from lin-
ear behavior appear at most positive or negative gate
voltages due to incipient gate leakage and hysteresis.

2. Low-temperature electronic measurements

The experiments are performed in a dilution refrigerator
with base temperature 20 mK. We use a standard four-wire
lock-in technique at 133 Hz and 100 nA current bias,
chosen to avoid self-heating while maximizing the signal.
The density is determined with Hall measurements in the
classical regime, whereas Shubnikov–de Haas oscillations
are used to exclude occupation of the second subband,
which is the case for all the data we discuss. The WAL
signature is a small correction (10−3) to total conductance.
To achieve a satisfactory signal-to-noise ratio, longitudinal
conductivity traces Δσ=σ0 ¼ ½σðBÞ − σð0Þ�=σð0Þ are mea-
sured at least 10 times and averaged.

3. Numerical simulations

The simulations calculate the Rashba coefficient α and
hk2zi based on the bulk semiconductor band parameters, the
well structure, the measured electron densities, and the
measured gate lever arms. We solve the Schrödinger and
Poisson equations self-consistently (“Hartree approxima-
tion”), obtain the self-consistent eigenfunctions, and then
determine α via appropriate expectation values [31]. The
Dresselhaus coefficient γ is extracted from fits of the
simulation to the experiment, which detects the absence
of WAL at α ¼ β ¼ γðhk2zi − k2F=4Þ. Thus, given α and hk2zi
from the simulation and the measured n ¼ k2F=ð2πÞ, we
obtain γ ¼ 11.6� 1 eVÅ3 consistently for all asymmetri-
cally doped wells. Taking into account the uncertainties of
the band parameters, the experimental errors, and a
negligible uncertainty on hk2zi, an overall uncertainty of
about 9%–10% or about �1 eVÅ3 on γ results. About
1%–2% error originates from the experimental uncertainty
of determining α ¼ β. The doping distribution (above or
below well) is not expected to influence γ, and hence we
use the same γ for the more symmetrically doped wafer.
Fits to the α ¼ β experimental points then determine how
much charge effectively comes from upper rather than
lower doping layers, fixing the last unknown parameter also
for the more symmetrically doped well (see SM [18]).

4. Spin-dephasing times and lengths

InWLorWALmeasurements, additional spin dephasing is
introduced by the externalmagnetic fieldB via theAharonov-
Bohm phase arising from the magnetic flux enclosed by the

time-reversed trajectories: Δφ ¼ 2eAB=ℏ, where A is the
loop area.Here,we takeA ¼ λ2SO ¼ 2DτSO as a characteristic
“diffusion area” probed by ourWLorWAL experiment, with
τSO being the spin-dephasing time, and λSO the spin-diffusion
length. By taking Δφ ¼ 1 (rad) at B ¼ BSO, we can extract
the spin-diffusion length λSO and spin-dephasing time τSO
from theminima of theWAL curves from λSO ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2eBSO

p

and τSO ¼ ℏð4eDBSOÞ−1, respectively. The factor of 4 here
stems from the two time-reversed paths and the diffusion
length.

5. Effective SO times and lengths

Theoretically, we determine τSO via a spin random walk
process [D’yakonov-Perel (DP)]. The initial electron spin
in a loop can point (with equal probability) along the sx− ,
sxþ , and sz axes (analogous to xþ, x−, and z, respectively),
which have unequal spin-dephasing times τDP;sx− , τDP;sxþ ,
and τDP;sz . For unpolarized, independent spins, we take
the average τeff ¼ðτDP;sx− þ τDP;sxþ þ τDP;szÞ=3, which leads
to an effective spin-difusion length λeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dτeff

p
.

Actually, λeff is defined from the average variance
λ2eff ¼ σ̄2 ¼ 2Dτeff , obtained by averaging the spin-
dependent variances σ2sx− ¼2DτDP;sx− , σ

2
sxþ

¼2DτDP;sxþ , and

σ2sz ¼ 2DτDP;sz over the spin directions sxþ , sx− , and sz (this
is equivalent to averaging over the τ’s and not over 1=τ’s).
In the SM [18], we discuss the spin random walk and
provide expressions for the DP times including corrections
due to the cubic β3 term. Figure 5 shows curves for the
spin-dephasing times and lengths presented here. In the
main panel, the cubic β3 is neglected in λeff since for
n ≤ 7 × 1011 cm−2, WL appears at α ¼ β (small β3). In
contrast, the cubic term is included in τeff in the inset since
at the higher density, n ¼ 9 × 1011 cm−2, WAL persists
(sufficiently strong β3).
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