1,316 research outputs found

    Non-integrability of density perturbations in the FRW universe

    Full text link
    We investigate the evolution equation of linear density perturbations in the Friedmann-Robertson-Walker universe with matter, radiation and the cosmological constant. The concept of solvability by quadratures is defined and used to prove that there are no "closed form" solutions except for the known Chernin, Heath, Meszaros and simple degenerate ones. The analysis is performed applying Kovacic's algorithm. The possibility of the existence of other, more general solutions involving special functions is also investigated.Comment: 13 pages. The latest version with added references, and a relevant new paragraph in section I

    Effective algorithm of analysis of integrability via the Ziglin's method

    Full text link
    In this paper we continue the description of the possibilities to use numerical simulations for mathematically rigorous computer assisted analysis of integrability of dynamical systems. We sketch some of the algebraic methods of studying the integrability and present a constructive algorithm issued from the Ziglin's approach. We provide some examples of successful applications of the constructed algorithm to physical systems.Comment: a figure added, version accepted to JDC

    Shapeshifter of Py

    Get PDF
    Shapeshifter of Py is a game developed for this research project, using both Python and Pygames. The Python language is gaining popularity, which is why developing a game to gain understanding about game design, will be an important objective of this research. The game will be in the style of Metroidvania. This style of game focuses on action-adventure as well as an exploration components. The game will be done in 2D using sprites. The sprites will be acquired online through free sources and will be used for everything from the main character, enemies, bosses, and levels. Music will also be incorporated in the game to make it more atmospheric. The game will involve the player searching a dungeon looking for power-ups. With these power-ups the player will be able to access more of the dungeon. The power ups will allow the player to transform and gain new abilities. These abilities will allow the player to move through areas previously locked. It will also allow the player to defeat the monster in the dungeon. At the end of the dungeon, the player will have to fight the final boss. After defeating him the player will have won. If the player is damaged a life bar will diminish. Once reaching zero the player will have been killed. If the player runs out of their three lives, they will have to restart from the beginning. This project is quite ambitious, which is perfect for learning and researching different nuances and capabilities of the Python language

    The evolution of extraordinary self-sacrifice

    Get PDF
    From a theoretical perspective, individuals are expected to sacrifice their welfare only when the benefits outweigh the costs. In nature, however, the costs of altruism and spite can be extreme, as in cases of irreversible sterility and self-destructive weaponry. Here we show that “extraordinary” self-sacrifice—in which actors pay costs that exceed the benefits they give or the costs they impose on recipients—can evolve in structured populations, where social actions bring secondary benefits to neighboring kin. When given information about dispersal, sedentary actors evolve extraordinary altruism towards dispersing kin. Likewise, when given information about dispersal and kinship, sedentary actors evolve extraordinary spite towards sedentary nonkin. Our results can thus be summed up by a simple rule: extraordinary self-sacrifice evolves when the actor’s neighbors are close kin and the recipient’s neighbors are not

    Bound and unbound substructures in Galaxy-scale Dark Matter haloes

    Full text link
    We analyse the coarse-grained phase-space structure of the six Galaxy-scale dark matter haloes of the Aquarius Project using a state-of-the-art 6D substructure finder. Within r_50, we find that about 35% of the mass is in identifiable substructures, predominantly tidal streams, but including about 14% in self-bound subhaloes. The slope of the differential substructure mass function is close to -2, which should be compared to around -1.9 for the population of self-bound subhaloes. Near r_50 about 60% of the mass is in substructures, with about 30% in self-bound subhaloes. The inner 35 kpc of the highest resolution simulation has only 0.5% of its mass in self-bound subhaloes, but 3.3% in detected substructure, again primarily tidal streams. The densest tidal streams near the solar position have a 3-D mass density about 1% of the local mean, and populate the high velocity tail of the velocity distribution.Comment: Submitted to MNRAS on 12/10/2010, 11 pages, 10 figure

    Using genetic algorithms to optimize social robot behavior for improved pedestrian flow

    Get PDF
    Includes bibliographical references.This paper expands on previous research on the effect of introducing social robots into crowded situations in order to improve pedestrian flow. In this case, a genetic algorithm is applied to find the optimal parameters for the interaction model between the robots and the people. Preliminary results indicate that adding social robots to a crowded situation can result in significant improvement in pedestrian flow. Using the optimized values of the model parameters as a guide, these robots can be designed to be more effective at improving the pedestrian flow. While this work only applies to one situation, the technique presented can be applied to a wide variety of scenarios

    Static mapping heuristics for tasks with dependencies, priorities, deadlines, and multiple versions in heterogeneous environments

    Get PDF
    Includes bibliographical references.Heterogeneous computing (HC) environments composed of interconnected machines with varied computational capabilities are well suited to meet the computational demands of large, diverse groups of tasks. The problem of mapping (defined as matching and scheduling) these tasks onto the machines of a distributed HC environment has been shown, in general, to be NP-complete. Therefore, the development of heuristic techniques to find near-optimal solutions is required. In the HC environment investigated, tasks had deadlines, priorities, multiple versions, and may be composed of communicating subtasks. The best static (off-line) techniques from some previous studies were adapted and applied to this mapping problem: a genetic algorithm (GA), a GENITOR-style algorithm, and a greedy Min-min technique. Simulation studies compared the performance of these heuristics in several overloaded scenarios, i.e., not all tasks executed. The performance measure used was a sum of weighted priorities of tasks that completed before their deadline, adjusted based on the version of the task used. It is shown that for the cases studied here, the GENITOR technique found the best results, but the faster Min-min approach also performed very well.This research was supported in part by the DARPA/ITO Quorum Program under GSA subcontract number GS09K99BH0250 and a Purdue University Dean of Engineering Donnan Scholarship

    Supernova Remnant in a Stratified Medium: Explicit, Analytical Approximations for Adiabatic Expansion and Radiative Cooling

    Get PDF
    We propose simple, explicit, analytical approximations for the kinematics of an adiabatic blast wave propagating in an exponentially stratified ambient medium, and for the onset of radiative cooling, which ends the adiabatic era. Our method, based on the Kompaneets implicit solution and the Kahn approximation for the radiative cooling coefficient, gives straightforward estimates for the size, expansion velocity, and progression of cooling times over the surface, when applied to supernova remnants (SNRs). The remnant shape is remarkably close to spherical for moderate density gradients, but even a small gradient in ambient density causes the cooling time to vary substantially over the remnant's surface, so that for a considerable period there will be a cold dense expanding shell covering only a part of the remnant. Our approximation provides an effective tool for identifying the approximate parameters when planning 2-dimensional numerical models of SNRs, the example of W44 being given in a subsequent paper.Comment: ApJ accepted, 11 pages, 2 figures embedded, aas style with ecmatex.sty and lscape.sty package

    Parallel algorithm for singular value decomposition as applied to failure tolerant manipulators, A

    Get PDF
    Includes bibliographical references (pages [348-349]).The system of equations that govern kinematically redundant manipulators is commonly solved by finding the singular value decomposition (SVD) of the corresponding Jacobian matrix. This can require considerable amounts of time to compute, thus a parallel SVD algorithm minimizing execution time is sought. The approach employed here lends itself to parallelization by using Givens rotations and information from previous decompositions. The key contributions of this research include the presentation and implementation of a new variation of a parallel SVD algorithm to compute the SVD for a set of post-fault Jacobians. Results from implementation of the algorithm on a MasPar MP-1 and an IBM SP2 are provided. Specific issues considered for each implementation include how data is mapped to the processing elements, the effect that increasing the number of processing elements has on execution time, and the type of parallel architecture used
    • …
    corecore