101 research outputs found

    Evaluating Research and Impact: A Bibliometric Analysis of Research by the NIH/NIAID HIV/AIDS Clinical Trials Networks

    Get PDF
    Evaluative bibliometrics uses advanced techniques to assess the impact of scholarly work in the context of other scientific work and usually compares the relative scientific contributions of research groups or institutions. Using publications from the National Institute of Allergy and Infectious Diseases (NIAID) HIV/AIDS extramural clinical trials networks, we assessed the presence, performance, and impact of papers published in 2006–2008. Through this approach, we sought to expand traditional bibliometric analyses beyond citation counts to include normative comparisons across journals and fields, visualization of co-authorship across the networks, and assess the inclusion of publications in reviews and syntheses. Specifically, we examined the research output of the networks in terms of the a) presence of papers in the scientific journal hierarchy ranked on the basis of journal influence measures, b) performance of publications on traditional bibliometric measures, and c) impact of publications in comparisons with similar publications worldwide, adjusted for journals and fields. We also examined collaboration and interdisciplinarity across the initiative, through network analysis and modeling of co-authorship patterns. Finally, we explored the uptake of network produced publications in research reviews and syntheses. Overall, the results suggest the networks are producing highly recognized work, engaging in extensive interdisciplinary collaborations, and having an impact across several areas of HIV-related science. The strengths and limitations of the approach for evaluation and monitoring research initiatives are discussed

    Can serum hyaluronic acid replace simple non-invasive indexes to predict liver fibrosis in HIV/Hepatitis C coinfected patients?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyaluronic acid (HA) serum levels correlate with the histological stages of liver fibrosis in hepatitis C virus (HCV) monoinfected patients, and HA alone has shown very good diagnostic accuracy as a non-invasive assessment of fibrosis and cirrhosis. The aim of this study was to evaluate serum HA levels as a simple non-invasive diagnostic test to predict hepatic fibrosis in HIV/HCV-coinfected patients and to compare its diagnostic performance with other previously published simple non-invasive indexes consisting of routine parameters (HGM-1, HGM-2, Forns, APRI, and FIB-4).</p> <p>Methods</p> <p>We carried out a cross-sectional study on 201 patients who all underwent liver biopsies and had not previously received interferon therapy. Liver fibrosis was determined via METAVIR score. The diagnostic accuracy of HA was assessed by area under the receiver operating characteristic curves (AUROCs).</p> <p>Results</p> <p>The distribution of liver fibrosis in our cohort was 58.2% with significant fibrosis (F≥2), 31.8% with advanced fibrosis (F≥3), and 11.4% with cirrhosis (F4). Values for the AUROC of HA levels corresponding to significant fibrosis (F≥2), advanced fibrosis (F≥3) and cirrhosis (F4) were 0.676, 0.772, and 0.863, respectively. The AUROC values for HA were similar to those for HGM-1, HGM-2, FIB-4, APRI, and Forns indexes. The best diagnostic accuracy of HA was found for the diagnosis of cirrhosis (F4): the value of HA at the low cut-off (1182 ng/mL) excluded cirrhosis (F4) with a negative predictive value of 99% and at the high cut-off (2400 ng/mL) confirmed cirrhosis (F4) with a positive predictive value of 55%. By utilizing these low and high cut-off points for cirrhosis, biopsies could have theoretically been avoided in 52.2% (111/201) of the patients.</p> <p>Conclusions</p> <p>The diagnostic accuracy of serum HA levels increases gradually with the hepatic fibrosis stage. However, HA is better than other simple non-invasive indexes using parameters easily available in routine clinical practice only for the diagnosing of cirrhosis.</p

    Sequence Imputation of HPV16 Genomes for Genetic Association Studies

    Get PDF
    Human Papillomavirus type 16 (HPV16) causes over half of all cervical cancer and some HPV16 variants are more oncogenic than others. The genetic basis for the extraordinary oncogenic properties of HPV16 compared to other HPVs is unknown. In addition, we neither know which nucleotides vary across and within HPV types and lineages, nor which of the single nucleotide polymorphisms (SNPs) determine oncogenicity.A reference set of 62 HPV16 complete genome sequences was established and used to examine patterns of evolutionary relatedness amongst variants using a pairwise identity heatmap and HPV16 phylogeny. A BLAST-based algorithm was developed to impute complete genome data from partial sequence information using the reference database. To interrogate the oncogenic risk of determined and imputed HPV16 SNPs, odds-ratios for each SNP were calculated in a case-control viral genome-wide association study (VWAS) using biopsy confirmed high-grade cervix neoplasia and self-limited HPV16 infections from Guanacaste, Costa Rica.HPV16 variants display evolutionarily stable lineages that contain conserved diagnostic SNPs. The imputation algorithm indicated that an average of 97.5±1.03% of SNPs could be accurately imputed. The VWAS revealed specific HPV16 viral SNPs associated with variant lineages and elevated odds ratios; however, individual causal SNPs could not be distinguished with certainty due to the nature of HPV evolution.Conserved and lineage-specific SNPs can be imputed with a high degree of accuracy from limited viral polymorphic data due to the lack of recombination and the stochastic mechanism of variation accumulation in the HPV genome. However, to determine the role of novel variants or non-lineage-specific SNPs by VWAS will require direct sequence analysis. The investigation of patterns of genetic variation and the identification of diagnostic SNPs for lineages of HPV16 variants provides a valuable resource for future studies of HPV16 pathogenicity

    Natural products in drug discovery: advances and opportunities

    Get PDF
    Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities

    Brugia malayi microfilariae adhere to human vascular endothelial cells in a C3-dependent manner

    Get PDF
    Brugia malayi causes the human tropical disease, lymphatic filariasis. Microfilariae (Mf) of this nematode live in the bloodstream and are ingested by a feeding mosquito vector. Interestingly, in a remarkable co-evolutionary adaptation, Mf appearance in the peripheral blood follows a circadian periodicity and reaches a peak when the mosquito is most likely to feed. For the remaining hours, the majority of Mf sequester in the lung capillaries. This circadian phenomenon has been widely reported and is likely to maximise parasite fitness and optimise transmission potential. However, the mechanism of Mf sequestration in the lungs remains largely unresolved. In this study, we demonstrate that B. malayi Mf can, directly adhere to vascular endothelial cells under static conditions and under flow conditions, they can bind at high (but not low) flow rates. High flow rates are more likely to be experienced diurnally. Furthermore, a non-periodic nematode adheres less efficiently to endothelial cells. Strikingly C3, the central component of complement, plays a crucial role in the adherence interaction. These novel results show that microfilariae have the ability to bind to endothelial cells, which may explain their sequestration in the lungs, and this binding is increased in the presence of inflammatory mediators

    A comparison of four fibrosis indexes in chronic HCV: Development of new fibrosis-cirrhosis index (FCI)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C can lead to liver fibrosis and cirrhosis. We compared readily available non-invasive fibrosis indexes for the fibrosis progression discrimination to find a better combination of existing non-invasive markers.</p> <p>Methods</p> <p>We studied 157 HCV infected patients who underwent liver biopsy. In order to differentiate HCV fibrosis progression, readily available AAR, APRI, FI and FIB-4 serum indexes were tested in the patients. We derived a new fibrosis-cirrhosis index (FCI) comprised of ALP, bilirubin, serum albumin and platelet count. FCI = [(ALP × Bilirubin) / (Albumin × Platelet count)].</p> <p>Results</p> <p>Already established serum indexes AAR, APRI, FI and FIB-4 were able to stage liver fibrosis with correlation coefficient indexes 0.130, 0.444, 0.578 and 0.494, respectively. Our new fibrosis cirrhosis index FCI significantly correlated with the histological fibrosis stages F0-F1, F2-F3 and F4 (r = 0.818, p < 0.05) with AUROCs 0.932 and 0.996, respectively. The sensitivity and PPV of FCI at a cutoff value < 0.130 for predicting fibrosis stage F0-F1 was 81% and 82%, respectively with AUROC 0.932. Corresponding value of FCI at a cutoff value ≥1.25 for the prediction of cirrhosis was 86% and 100%.</p> <p>Conclusions</p> <p>The fibrosis-cirrhosis index (FCI) accurately predicted fibrosis stages in HCV infected patients and seems more efficient than frequently used serum indexes.</p

    PAK4 signaling in development and cancer

    Get PDF
    Our understanding of cancer biology has been evolving rapidly shaped by groundbreaking discoveries. We now understand that cancer is not one disease but many, and that tumors are not foreign objects in the human body but rather the result of changes in the previously normal tissues and organs. Thus, in order to ask fundamental questions and dissect the complexity of cancer it is essential to grasp how the healthy organs develop and function and the cellular and molecular mechanisms involved. The serine/threonine PAKs are signaling hubs with proven roles in development and disease. Specifically, they are important to several hallmarks of cancer. Thus, the family in general, and PAK4 in particular, is increasingly attracting the interest of the scientific community. In this thesis I have explored the role of PAK4 in normal organ development and cancer. Novel mouse models with PAK4 depletion in the mammary gland and in the pancreas have been established and characterized in Paper I and Paper II. The absence of major tissue abnormalities upon PAK4 depletion in the mammary epithelium allowed me to use this model to study the role of PAK4 in tumorigenesis in vivo, in Paper III, and a counterpart mouse model with PAK4 overexpression in the mammary epithelium was also generated. These complementary in vivo setups showed that PAK4-overexpressing mammary glands occasionally developed mammary tumors while PAK4 abrogation impaired PyMT-driven mammary tumorigenesis. Extensive in vitro experiments, using state of the art techniques, then supported a model in which PAK4 confers selective advantages to cancer cells by overcoming the senescence barrier. This, in turn, constitutes a selective vulnerability of cancer cells that become susceptible to a senescence-like response upon PAK4 inhibition. The data presented also demonstrates a crosstalk between PAK4 and NF-κB signaling, and a direct interaction and phosphorylation site within the REL-homology domain of RELB is found to be relevant for tuning RELB-mediated transcription and cancer cell proliferation via C/EBPβ. Importantly, these findings were largely supported by correlations in clinical data and validated ex vivo in patient-derived cells, thus highlighting PAK4 as an attractive therapeutic opportunity in cancer. Therefore, this thesis contributes to a better understanding of the mechanisms that govern breast tumorigenesis, with hopes that such knowledge will prove relevant in cancer prognosis and treatment

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties
    corecore