212 research outputs found

    Clonal Complex 258, the Most Frequently Found Multilocus Sequence Type Complex in KPC-2-Producing Klebsiella pneumoniae Isolated in Brazilian Hospitals

    Get PDF
    Universidade Federal de São Paulo, Lab Alerta, Div Infect Dis, Dept Med, São Paulo, BrazilUniversidade Federal de São Paulo, Cent Lab, Hosp São Paulo, São Paulo, BrazilUniversidade Federal de São Paulo, Lab Alerta, Div Infect Dis, Dept Med, São Paulo, BrazilUniversidade Federal de São Paulo, Cent Lab, Hosp São Paulo, São Paulo, BrazilWeb of Scienc

    Clinical application of next-generation sequencing of plasma cell-free DNA for genotyping untreated advanced non-small cell lung cancer

    Get PDF
    Simple Summary Plasma ctDNA is a material source for molecular analysis particularly useful when tissue is not available or sufficient. NGS-based plasma genotyping should be integrated into the clinical workup of newly diagnosed advanced NSCLC. Background: Analysis of circulating tumor DNA (ctDNA) has remarkable potential as a non-invasive lung cancer molecular diagnostic method. This prospective study addressed the clinical value of a targeted-gene amplicon-based plasma next-generation sequencing (NGS) assay to detect actionable mutations in ctDNA in patients with newly diagnosed advanced lung adenocarcinoma. Methods: ctDNA test performance and concordance with tissue NGS were determined, and the correlation between ctDNA findings, clinical features, and clinical outcomes was evaluated in 115 patients with paired plasma and tissue samples. Results: Targeted-gene NGS-based ctDNA and NGS-based tissue analysis detected 54 and 63 genomic alterations, respectively; 11 patients presented co-mutations, totalizing 66 hotspot mutations detected, 51 on both tissue and plasma, 12 exclusively on tissue, and 3 exclusively on plasma. NGS-based ctDNA revealed a diagnostic performance with 81.0% sensitivity, 95.3% specificity, 94.4% PPV, 83.6% NPV, test accuracy of 88.2%, and Cohen's Kappa 0.764. PFS and OS assessed by both assays did not significantly differ. Detection of ctDNA alterations was statistically associated with metastatic disease (p = 0.013), extra-thoracic metastasis (p = 0.004) and the number of organs involved (p = 0.010). Conclusions: This study highlights the potential use of ctDNA for mutation detection in newly diagnosed NSCLC patients due to its high accuracy and correlation with clinical outcomes

    Revision and annotation of DNA barcode records for marine invertebrates: Report of the 8th iBOL conference hackathon

    Get PDF
    The accuracy of specimen identification through DNA barcoding and metabarcoding relies on reference libraries containing records with reliable taxonomy and sequence quality. The considerable growth in barcode data requires stringent data curation, especially in taxonomically difficult groups such as marine invertebrates. A major effort in curating marine barcode data in the Barcode of Life Data Systems (BOLD) was undertaken during the 8th International Barcode of Life Conference (Trondheim, Norway, 2019). Major taxonomic groups (crustaceans, echinoderms, molluscs, and polychaetes) were reviewed to identify those which had disagreement between Linnaean names and Barcode Index Numbers (BINs). The records with disagreement were annotated with four tags: A) MIS-ID (misidentified, mislabeled, or contaminated records), b) AMBIG (ambiguous records unresolved with the existing data), c) COMPLEX (species names occurring in multiple BINs), and d) SHARE (barcodes shared between species). A total of 83,712 specimen records corresponding to 7,576 species were reviewed and 39% of the species were tagged (7% MIS-ID, 17% AMBIG, 14% COMPLEX, and 1% SHARE). High percentages (>50%) of AMBIG tags were recorded in gastropods, whereas COMPLEX tags dominated in crustaceans and polychaetes. The high proportion of tagged species reflects either flaws in the barcoding workflow (e.g., misidentification, cross-contamination) or taxonomic difficulties (e.g., synonyms, undescribed species). Although data curation is essential for barcode applications, such manual attempts to examine large datasets are unsustainable and automated solutions are extremely desirable.The hackathon was organized with financial support from the European Union COST Action DNAqua-Net (CA 15219 https://dnaqua.net/) in the scope of the 8th International Barcode of Life Conference in Trondheim, Norway on 16 June 2019. DNAqua-Net is acknowledged for the funding provided and the local conference organizers for all the logistical support that ensured a successful event. Tyler Elliot and the rest of the BOLD team are acknowledged for their help with data queries and analytics. The authors also thank the hackathon participants for vibrant discussions during and after the event: Berry van der Hoorn, Katrine Konsghavn, Guy Paz, Mouna Rifi, Malin Strand, Anne Helene Tandberg, Adam Wall, and Endre Willassen. Marcos A. L. Teixeira was supported by a PhD grant from the Portuguese Foundation for Science and Technology (FCT I.P.) co-financed by ESF (SFRH/BD/131527/2017). Financial support granted by FCT to Sofia Duarte (CEECIND/00667/2017) and to Pedro E. Vieira (project NIS-DNA, PTDC/BIA-BMA/29754/2017) is also acknowledged. Sanna Majaneva was financially supported by the Norwegian Taxonomy Initiative (project no. 70184235). The authors thank the five reviewers who provided valuable input into the earlier version of the manuscript

    Roles of non-coding RNA in sugarcane-microbe interaction

    Get PDF
    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a coppertransporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper- microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 50RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly

    Expression of APOBEC3G/3F and G-to-A Hypermutation Levels in HIV-1-Infected Children with Different Profiles of Disease Progression

    Get PDF
    OBJECTIVE: Increasing evidence has accumulated showing the role of APOBEC3G (A3G) and 3F (A3F) in the control of HIV-1 replication and disease progression in humans. However, very few studies have been conducted in HIV-infected children. Here, we analyzed the levels of A3G and A3F expression and induced G-to-A hypermutation in a group of children with distinct profiles of disease progression. METHODOLOGY/PRINCIPAL FINDINGS: Perinatally HIV-infected children were classified as progressors or long-term non-progressors according to criteria based on HIV viral load and CD4 T-cell counts over time. A group of uninfected control children were also enrolled in the study. PBMC proviral DNA was assessed for G-to-A hypermutation, whereas A3G and A3F mRNA were isolated and quantified through TaqMan® real-time PCR. No correlation was observed between disease progression and A3G/A3F expression or hypermutation levels. Although all children analyzed showed higher expression levels of A3G compared to A3F (an average fold of 5 times), a surprisingly high A3F-related hypermutation rate was evidenced in the cohort, irrespective of the child's disease progression profile. CONCLUSION: Our results contribute to the current controversy as to whether HIV disease progression is related to A3G/A3F enzymatic activity. To our knowledge, this is the first study analyzing A3G/F expression in HIV-infected children, and it may pave the way to a better understanding of the host factors governing HIV disease in the pediatric setting

    Comparing the Bacterial Diversity of Acute and Chronic Dental Root Canal Infections

    Get PDF
    This study performed barcoded multiplex pyrosequencing with a 454 FLX instrument to compare the microbiota of dental root canal infections associated with acute (symptomatic) or chronic (asymptomatic) apical periodontitis. Analysis of samples from 9 acute abscesses and 8 chronic infections yielded partial 16S rRNA gene sequences that were taxonomically classified into 916 bacterial species-level operational taxonomic units (OTUs) (at 3% divergence) belonging to 67 genera and 13 phyla. The most abundant phyla in acute infections were Firmicutes (52%), Fusobacteria (17%) and Bacteroidetes (13%), while in chronic infections the dominant were Firmicutes (59%), Bacteroidetes (14%) and Actinobacteria (10%). Members of Fusobacteria were much more prevalent in acute (89%) than in chronic cases (50%). The most abundant/prevalent genera in acute infections were Fusobacterium and Parvimonas. Twenty genera were exclusively detected in acute infections and 18 in chronic infections. Only 18% (n = 165) of the OTUs at 3% divergence were shared by acute and chronic infections. Diversity and richness estimators revealed that acute infections were significantly more diverse than chronic infections. Although a high interindividual variation in bacterial communities was observed, many samples tended to group together according to the type of infection (acute or chronic). This study is one of the most comprehensive in-deep comparisons of the microbiota associated with acute and chronic dental root canal infections and highlights the role of diverse polymicrobial communities as the unit of pathogenicity in acute infections. The overall diversity of endodontic infections as revealed by the pyrosequencing technique was much higher than previously reported for endodontic infections

    Results From the Global Rheumatology Alliance Registry

    Get PDF
    Funding Information: We acknowledge financial support from the ACR and EULAR. The ACR and EULAR were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Publisher Copyright: © 2022 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. Methods: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. Results: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. Conclusion: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression.publishersversionepub_ahead_of_prin

    Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: The ZIKAlliance consortium

    Get PDF
    Background: The European Commission (EC) Horizon 2020 (H2020)-funded ZIKAlliance Consortium designed a multicentre study including pregnant women (PW), children (CH) and natural history (NH) cohorts. Clinical sites were selected over a wide geographic range within Latin America and the Caribbean, taking into account the dynamic course of the ZIKV epidemic. Methods: Recruitment to the PW cohort will take place in antenatal care clinics. PW will be enrolled regardless of symptoms and followed over the course of pregnancy, approximately every 4 weeks. PW will be revisited at delivery (or after miscarriage/abortion) to assess birth outcomes, including microcephaly and other congenital abnormalities according to the evolving definition of congenital Zika syndrome (CZS). After birth, children will be followed for 2 years in the CH cohort. Follow-up visits are scheduled at ages 1-3, 4-6, 12, and 24 months to assess neurocognitive and developmental milestones. In addition, a NH cohort for the characterization of symptomatic rash/fever illness was designed, including follow-up to capture persisting health problems. Blood, urine, and other biological materials will be collected, and tested for ZIKV and other relevant arboviral diseases (dengue, chikungunya, yellow fever) using RT-PCR or serological methods. A virtual, decentralized biobank will be created. Reciprocal clinical monitoring has been established between partner sites. Substudies of ZIKV seroprevalence, transmissio
    corecore