33 research outputs found
Epacadostat stabilizes the apo-form of IDO1 and signals a pro-tumorigenic pathway in human ovarian cancer cells
The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target
A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells
Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1\ua0(IDO1) are immunoregulatory enzymes catalyzing the degradation of L-arginine and L-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1+ myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation could represent an important target for effective immunotherapy in several disease settings
GABAergic Neuron Deficit As An Idiopathic Generalized Epilepsy Mechanism: The Role Of BRD2 Haploinsufficiency In Juvenile Myoclonic Epilepsy
Idiopathic generalized epilepsy (IGE) syndromes represent about 30% of all epilepsies. They have strong, but elusive, genetic components and sex-specific seizure expression. Multiple linkage and population association studies have connected the bromodomain-containing gene BRD2 to forms of IGE. In mice, a null mutation at the homologous Brd2 locus results in embryonic lethality while heterozygous Brd2+/− mice are viable and overtly normal. However, using the flurothyl model, we now show, that compared to the Brd2+/+ littermates, Brd2+/− males have a decreased clonic, and females a decreased tonic-clonic, seizure threshold. Additionally, long-term EEG/video recordings captured spontaneous seizures in three out of five recorded Brd2+/− female mice. Anatomical analysis of specific regions of the brain further revealed significant differences in Brd2+/− vs +/+ mice. Specifically, there were decreases in the numbers of GABAergic (parvalbumin- or GAD67-immunopositive) neurons along the basal ganglia pathway, i.e., in the neocortex and striatum of Brd2+/− mice, compared to Brd2+/+ mice. There were also fewer GABAergic neurons in the substantia nigra reticulata (SNR), yet there was a minor, possibly compensatory increase in the GABA producing enzyme GAD67 in these SNR cells. Further, GAD67 expression in the superior colliculus and ventral medial thalamic nucleus, the main SNR outputs, was significantly decreased in Brd2+/− mice, further supporting GABA downregulation. Our data show that the non-channel-encoding, developmentally critical Brd2 gene is associated with i) sex-specific increases in seizure susceptibility, ii) the development of spontaneous seizures, and iii) seizure-related anatomical changes in the GABA system, supporting BRD2's involvement in human IGE
The Italian Framework of Bipolar Disorders in the Elderly: Old and Current Issues and New Suggestions for the Geriatric Psycho-Oncology Research
Background: Older adults with mood disorders constitute a heterogeneous group in a complex spectrum interlinked with physical comorbidities. Worldwide, Bipolar disorders in older people (OABD) remain underestimated and underdiagnosed. OABD is challenging in the clinical setting and is associated with adverse outcomes (increased risk of anti-social behaviour triggered by inappropriate drugs and increased incidence of health deficits, including cancer). This article aims to describe the state of the art of OABD in the Italian framework and provide a new field of research. Methods: We performed an overview of the literature, selecting our target population (over 65 years) and synthesising the main challenging issues. By exploiting the Italian database from the Minister of Health in 2021, we analysed epidemiological data in the age range 65-74 years and 75-84 years old. Results: Females showed the highest prevalence and incidence in both groups, with a regional difference across the country but more evident in the Autonomous Provinces of Bolzano and Trento for the 65-74 years range. Several projects recently focused on this topic, and the urgency to define better the epidemiological framework is mandatory. Conclusions: This study represented the first attempt to report the comprehensive Italian framework on OABD aimed at fostering research activities and knowledge