626 research outputs found
Dynamics of charge-displacement channeling in intense laser-plasma interactions
The dynamics of transient electric fields generated by the interaction of
high intensity laser pulses with underdense plasmas has been studied
experimentally with the proton projection imaging technique. The formation of a
charged channel, the propagation of its front edge and the late electric field
evolution have been characterised with high temporal and spatial resolution.
Particle-in-cell simulations and an electrostatic, ponderomotive model
reproduce the experimental features and trace them back to the ponderomotive
expulsion of electrons and the subsequent ion acceleration.Comment: 5 figures, accepted for publication in New Journal of Physic
Mean-Field Interacting Boson Random Point Fields in Weak Harmonic Traps
A model of the mean-field interacting boson gas trapped by a weak harmonic
potential is considered by the \textit{boson random point fields} methods. We
prove that in the Weak Harmonic Trap (WHT) limit there are two phases
distinguished by the boson condensation and by a different behaviour of the
local particle density. For chemical potentials less than a certain critical
value, the resulting Random Point Field (RPF) coincides with the usual boson
RPF, which corresponds to a non-interacting (ideal) boson gas. For the chemical
potentials greater than the critical value, the boson RPF describes a divergent
(local) density, which is due to \textit{localization} of the macroscopic
number of condensed particles. Notice that it is this kind of transition that
observed in experiments producing the Bose-Einstein Condensation in traps
Conditional Intensity and Gibbsianness of Determinantal Point Processes
The Papangelou intensities of determinantal (or fermion) point processes are
investigated. These exhibit a monotonicity property expressing the repulsive
nature of the interaction, and satisfy a bound implying stochastic domination
by a Poisson point process. We also show that determinantal point processes
satisfy the so-called condition which is a general form of
Gibbsianness. Under a continuity assumption, the Gibbsian conditional
probabilities can be identified explicitly.Comment: revised and extende
Evidence of resonant surface wave excitation in the relativistic regime through measurements of proton acceleration from grating targets
The interaction of laser pulses with thin grating targets, having a periodic
groove at the irradiated surface, has been experimentally investigated.
Ultrahigh contrast () pulses allowed to demonstrate an enhanced
laser-target coupling for the first time in the relativistic regime of
ultra-high intensity >10^{19} \mbox{W/cm}^{2}. A maximum increase by a factor
of 2.5 of the cut-off energy of protons produced by Target Normal Sheath
Acceleration has been observed with respect to plane targets, around the
incidence angle expected for resonant excitation of surface waves. A
significant enhancement is also observed for small angles of incidence, out of
resonance.Comment: 5 pages, 5 figures, 2nd version implements final correction
Eynard-Mehta theorem, Schur process, and their pfaffian analogs
We give simple linear algebraic proofs of Eynard-Mehta theorem,
Okounkov-Reshetikhin formula for the correlation kernel of the Schur process,
and Pfaffian analogs of these results. We also discuss certain general
properties of the spaces of all determinantal and Pfaffian processes on a given
finite set.Comment: AMSTeX, 21 pages, a new section adde
Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients
It is known by the experience gained from the gravitational wave detector
proto-types that the interferometric output signal will be corrupted by a
significant amount of non-Gaussian noise, large part of it being essentially
composed of long-term sinusoids with slowly varying envelope (such as violin
resonances in the suspensions, or main power harmonics) and short-term ringdown
noise (which may emanate from servo control systems, electronics in a
non-linear state, etc.). Since non-Gaussian noise components make the detection
and estimation of the gravitational wave signature more difficult, a denoising
algorithm based on adaptive filtering techniques (LMS methods) is proposed to
separate and extract them from the stationary and Gaussian background noise.
The strength of the method is that it does not require any precise model on the
observed data: the signals are distinguished on the basis of their
autocorrelation time. We believe that the robustness and simplicity of this
method make it useful for data preparation and for the understanding of the
first interferometric data. We present the detailed structure of the algorithm
and its application to both simulated data and real data from the LIGO 40meter
proto-type.Comment: 16 pages, 9 figures, submitted to Phys. Rev.
Kinetic energy of solid neon by Monte Carlo with improved Trotter- and finite-size extrapolation
The kinetic energy of solid neon is calculated by a path-integral Monte Carlo
approach with a refined Trotter- and finite-size extrapolation. These accurate
data present significant quantum effects up to temperature T=20 K. They confirm
previous simulations and are consistent with recent experiments.Comment: Text and figures revised for minor corrections (4 pages, 3 figures
included by psfig
Ion Acceleration in Multispecies Targets Driven by Intense Laser Radiation Pressure
The acceleration of ions from ultrathin foils has been investigated by using 250 TW, subpicosecond laser pulses, focused to intensities of up to 3 X 10(20) W cm(-2). The ion spectra show the appearance of narrow-band features for protons and carbon ions peaked at higher energies (in the 5-10 MeV/nucleon range) and with significantly higher flux than previously reported. The spectral features and their scaling with laser and target parameters provide evidence of a multispecies scenario of radiation pressure acceleration in the light sail mode, as confirmed by analytical estimates and 2D particle-in-cell simulations. The scaling indicates that monoenergetic peaks with more than 100 MeV/nucleon are obtainable with moderate improvements of the target and laser characteristics, which are within reach of ongoing technical developments.</p
- …
