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Abstract. A special case of a Gibbsian facet process on a fixed window with a discrete
orientation distribution and with increasing intensity of the underlying Poisson process is
studied. All asymptotic joint moments for interaction U-statistics are calculated and the
central limit theorem is derived using the method of moments.
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1. Introduction

In the present paper we use the methods developed in [9] to calculate all moments

of Gibbsian U-statistics of facets in a bounded window of arbitrary Euclidean dimen-

sion. These moments are used to derive the central limit theorem for such statistics.

Central limit theorems for U-statistics of Poisson processes were derived based on the

Malliavin calculus and the Stein method in [7]. The effort to extend developments

of this type to functionals of a wider class of spatial processes, e.g. Gibbs processes,

was initiated in [8].

Our calculations are based on the achievements in [1], where functionals of spatial

point processes given by a density with respect to the Poisson process were inves-

tigated using the Fock space representation from [4]. This formula is applied to

the product of a functional and the density and using a special class of functionals

called U-statistics closed formulas for mixed moments of functionals are obtained.

In processes with densities the key characteristic is the correlation function (see [3])

of arbitrary order.

This research was supported by grants SVV 260225 of Charles University in Prague and
GA ČR 16-03708S of the Czech Science Foundation.
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As in [9] we call facets some compact subsets of hyperplanes with a given shape,

size and orientation. Natural geometrical characteristics of the union of facets, based

on Hausdorff measure of the intersections of pairs, triplets, etc., of facets form U-

statistics. Building a parametric density from exponential family, the limitations for

the space of parameters have to be given, the so-called submodels are investigated.

In application of the moment formulas we are interested in the limit behaviour as

the intensity of the reference Poisson process tends to infinity.

We restrict ourselves to the facet model with finitely many orientations corre-

sponding to canonical vectors. In [9] basic asymptotic properties of the studied

U-statistics are derived. When the order of the submodel is not greater than the or-

der of the observed U-statistic, then asymptotically the mean value of the U-statistic

vanishes. This leads to a degeneracy in the sense that some orientations are missing.

On the other hand, when the order of the submodel is greater than the order of the

observed U-statistic, then the limit of the correlation function is finite and nonzero

and under selected standardization the U-statistic tends almost surely to its nonzero

expectation. By changing the standardization, however, we achieve a finite nonzero

asymptotic variance. In the present paper we simplify the calculation of moments

so that we are able to calculate any asymptotic moment.

2. Central limit theorem

We call facets some compact subsets of hyperplane in R
d. Let

Ỹ = {B ⊂ R
d : ∃ l ∈ [d], (x1, . . . , xd) ∈ B, xl = zl; |xi − zi| 6 b, i ∈ [d] \ {l}},

where

(z1, . . . , zd) ∈ [0, b]d, [d] = {1, . . . , d},

be a space of facets with fixed size b, orientations restricted only to elementary vectors

e1, . . . , ed and centres in a cube [0, b]
d (facets are (d − 1)-dimensional cubes). The

space Ỹ is isomorphic to Y = [0, b]d × {2b} × {e1, . . . , ed}, where the three parts are

the set of facet centres, possible sizes of the facet and possible orientations of the

hyperplane containing the facet. Therefore we will call Y also the space of facets

and use it instead of Ỹ . We also define the isomorphism ι : Y → Ỹ by

ι((z1, . . . , zd), 2b, el) = {(x1, . . . , xd) ∈ R
d : xl = zl; |xi − zi| 6 b, i ∈ [d] \ {l}},

where

(z1, . . . , zd) ∈ [0, b]d, l ∈ [d].
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Moreover, let (N,N ) be a measurable space of integer-valued finite measures on Y ,

where N is the smallest σ-algebra which makes the mappings x 7→ x(A), x ∈ N,

measurable for all Borel sets A ⊂ Y .

Let (Ω,A, P ) be a probability space and ηa : (Ω,A, P ) → (N,N ) a finite Poisson

process of facets with intensity measure aλ on Y , a > 1, in the form

aλ(d(z, r, ϕ)) = aχ(z) dzδ2b(dr)
1

d

d∑

i=1

δei(dϕ),

where we have fixed the facet size, uniform distribution of the facet orientation and

χ : [0, b]d → R+. We also define interaction U-statistics (using Hausdorff measure

H
d−j of order d− j)

Gj(x) =
1

j!

∑

(x1,...,xj)∈x
j
6=

H
d−j

( j⋂

i=1

ι(xi)

)
, x ∈ N,

where xj
6= is set of all j-tuples of distinct facets from the support of x. Furthermore,

we define the process µa with density

p(x) = ca exp

( d∑

i=1

νiGi(x)

)

with respect to Pηa , the probability distribution of ηa on space (N,N ), where a > 1,

νi is a real parameter and

ca =
1

E exp
( d∑
i=1

νiGi(ηa)
) .

Fulfilling of the condition νi 6 0, i = 2, . . . , d ensures that p(x) ∈ L2(Pηa). Necessity

of these conditions will be discussed later. We also use the notion of a submodel

µ
(l)
a of order l, where νj = 0, j 6= l, and νl < 0. We will explore properties of

such submodels of order higher than 1, because in the case of µ
(1)
a we deal with

a Poisson process (see [9]). We will also use a correlation function of order k, see [3],

formula (2.2), which is defined as

̺k(x1, . . . , xk, µ
(c)
a ) =

E exp(νcGc(ηa ∪ {x1, . . . , xk}))

E exp(νcGc(ηa))
,

where x1, . . . , xk ∈ Y .
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We can use a short expression for moment formulas using diagrams and partitions,

see [6], [4], Theorem 1.1. Let Π̃k be the set of all partitions {Ji} of [k], where Ji are

disjoint blocks and
⋃
Ji = [k]. For k = k1 + . . .+ km and blocks

Ji = {j : k1 + . . .+ ki−1 < j 6 k1 + . . .+ ki}, i = 1, . . . ,m,

consider the partition π = {Ji, 1 6 i 6 m} and let Πk1,...,km ⊂ Π̃k be the set of all

partitions σ ∈ Π̃k such that |J ∩ J ′| 6 1 for all J ∈ π and all J ′ ∈ σ. Here |J | is the

cardinality of a block J ∈ σ. We will refer to blocks of π as rows and we denote by

S(σ) = |{J ∈ π : ∀ J ′ ∈ σ, |J ∩ J ′| = 1 ⇒ |J ′| = 1}| the number of singleton rows of

partition σ.

For a partition σ ∈ Πk1...km and measurable functions fj : B → R, j = 1, . . . ,m,

we define the function
(⊗m

j=1 fj
)
σ
: B|σ| → R by replacing all variables of the tensor

product
⊗m

j=1 fj that belong to the same block of σ by a new common variable, |σ|

is the number of blocks in σ. We define Π
(m1,...,ms)
1,...,s = Π1,...,1,...,s,...,s, where i repeats

mi times for i = 1, . . . , s. We put
(
p
q

)
= 0 for q > p. Now we state the main theorem

of the paper.

Theorem 1. Denote

G̃j(µ
(c)
a ) =

Gj(µ
(c)
a )− EGj(µ

(c)
a )

aj−1/2
, 1 6 j 6 d, 2 6 c 6 d.

Then

(1) (G̃1(µ
(c)
a ), . . . , G̃d(µ

(c)
a ))

D
−→ Z, c = 2, . . . , d,

as a tends to infinity, where Z ∼ N(0,Σ), Σ = {θij}
d
i,j=1,

θkl =
c− 1

dk+l−1

(
c− 2

k − 1

)(
c− 2

l − 1

)
Ikl,

Ikl =

∫

([0,b]d)k+l−1

H
d−k

( k⋂

i=1

ι(si, 2b, ei)

)
H

d−l

( l⋂

i=2

ι(si+k−1, 2b, ei) ∩ ι(s1, 2b, e1)

)

× χ(s1) ds1 . . . χ(sk+l−1) dsk+l−1.

Moreover,

Gj(µ
(c)
a )

L1

−→ 0, c ∈ {2, . . . , d}, j > c,

Gj(µ
(c)
a )

aj
L2

−→
Ij
dj

(
c− 1

j

)
, c ∈ {2, . . . , d}, j < c,
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where

Ij =

∫

([0,b]d)j
H

d−j

( j⋂

i=1

ι(si, 2b, ei)

)
χ(s1) ds1 . . . χ(sj) dsj .

R em a r k 1. Random variables G̃c(µ
(c)
a ), G̃c+1(µ

(c)
a ), . . . , G̃d(µ

(c)
a ) are asympto-

tically degenerate, i.e., their expectations tend to zero and asymptotic covariances

of these variables are θkl = 0, k > c, l ∈ [d].

R em a r k 2. For the random vector (G̃1(ηa), . . . , G̃d(ηa)) we have similar results,

see [5], Theorem 4.1, with θkl =
d

dk+l−1

(
d−1
k−1

)(
d−1
l−1

)
Ikl.

Corollary 1. It holds that

(2)
Gj(µ

(c)
a )− EGj(µ

(c)
a )

aj−
1
2

D
−→ Z, c = 2, . . . , d, j < c,

as a tends to infinity, where Z ∼ N(0, θjj).

Now we state three auxiliary lemmas, whose proofs are in Section 4.

Lemma 1. It holds that

(3) ̺p(x1, . . . , xp, µ
(c)
a ) =

E exp(νcGc(ηa ∪ {x1, . . . , xp}))

E exp(νcGc(ηa))
→

(
d−k

d−c+1

)
(

d
d−c+1

) ,

as a tends to infinity, where xi ∈ Y and k is the number of distinct facet orientations

among {x1, . . . , xp} and c > 2. Moreover, there exist a0 > 1, R > 0, S > 0, which

do not depend on x1, . . . , xp, such that

∣∣∣∣̺p(x1, . . . , xp, µ
(c)
a )−

(
d−k

d−c+1

)
(

d
d−c+1

)
∣∣∣∣ < Re−Sa ∀ a > a0.

R em a r k 3. Consider matrix A = {aij}di,j=1, where ∀ i ∃ ji : aiji = 1; aij = 0,

j 6= ji and ∀ j ∃ ij : aijj = 1; aij = 0, i 6= ij . Then it can be shown that for rotation

of facets Ã : Y → Y , Ã((z, r, ϕ)) = (z, r, Aϕ) around their centers given by A the

following relation holds:

̺p(x1, . . . , xp, µ
(c)
a ) = ̺p(Ã(x1), . . . , Ã(xp), µ

(c)
a ).

For some n(d) = (n1, . . . , nd) we define

Rc,p(q, d,n(d)) =
∑

F⊂[d]
c−p6|F |6c

|F∪[q]|+p−q>c

∏

j∈F

nj .
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If ni is the number of facets among u1, . . . , un with orientation ei, then specially

Rc,0(0, d,n(d)) is the total number of intersections of all c-tuples among u1, . . . , un

and Rc,p(p, d,n(d)) is the total number of intersections of all c-tuples among facets

u1, . . . , un, (z
1, 2b, e1), . . . , (z

p, 2b, ep).

Lemma 2. For any ν < 0, p < c 6 d, c > 2 there exist R > 0, S > 0, such that

for a > 1,

∣∣∣∣
∞∑

n1=0

. . .

∞∑

nd=0

an1+...+nd

n1! . . . nd!
exp(νRc,p(p, d,n(d))− a(c− 1))−

(d− p)!

(c− 1− p)!

∣∣∣∣ < Re−Sa.

For any ν < 0, p = c 6 d, c > 2 there exist R > 0, S > 0, such that for a > 1,

∣∣∣∣
∞∑

n1=0

. . .

∞∑

nd=0

an1+...+nd

n1! . . . nd!
exp(νRc,p(p, d,n(d))− a(c− 1))

∣∣∣∣ < Re−Sa.

Lemma 3. For any c 6 d, m1, . . . ,md ∈ N
0 and σ ∈ Π

(m1,...,md)
1,...,d , there exist

R > 0, S > 0, a0 > 1, such that for a > a0,

∣∣∣∣
∫

Y |σ|

( d⊗

j=1

((H
d−j

)⊗mj )

)

σ

(u1, . . . , u|σ|)̺|σ|(u1, . . . , u|σ|, µ
(c)
a )λ|σ|(d(u1, . . . , u|σ|))

−

∫

Y
|σ|
c−1

( d⊗

j=1

((H
d−j

)⊗mj )

)

σ

(u1, . . . , u|σ|)λ
|σ|(d(u1, . . . , u|σ|))

∣∣∣∣ < Re−Sa,

where Yc−1 = [0, b]d × {2b} × {e1, . . . , ec−1} is the space of facets with d− c+ 1

orientations missing (which can be selected arbitrarily) and H
d−j

(u1, . . . , uj) =

H
d−j

( j⋂
i=1

ι(ui)
)
.

R em a r k 4. The expression

∫

Y |σ|

( d⊗

j=1

((H
d−j

)⊗mj )

)

σ

(u1, . . . , u|σ|)̺|σ|(u1, . . . , u|σ|, µ
(c)
a )λ|σ|(d(u1, . . . , u|σ|))

in the statement of Lemma 3 is used in the calculation of the product of moments

and this lemma shows that for large a the correlation function can be removed from

the integral, if we consider only d− c+ 1 orientations instead of d.

This will be used in the proof of Theorem 1.
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R em a r k 5. Consider the process µa with density in more general form p(x) =

ca exp
( d∑
i=1

νiGi(x)
)
. Assume that there is c > 2, νc > 0, and select minimal such c.

Then

(4) E exp

( d∑

j=1

νjGj(ηa)

)

=

∞∑

n=0

ane−aT

n!

∫

Y n

exp

( d∑

j=1

νjGj({u1, . . . , un})

)
λn(d(u1, . . . , un))

> e−aT
∞∑

n1=0

. . .

∞∑

nd=0

(aT/d)n1+...+nd

n1! . . . nd!
exp

( d∑

j=1

ν′j
∑

{i1,...,ij}⊂[d]

j∏

l=1

nil

)

> e−aT
∞∑

n1=0

. . .
∞∑

nc=0

(aT/d)n1+...+nc

n1! . . . nc!
exp

( c∑

j=1

ν′j
∑

{i1,...,ij}⊂[c]

j∏

l=1

nil

)

> e−aT
∞∑

n=0

(aT/d)nc

(n!)c
exp

( c∑

j=1

ν′j

(
c

j

)
nj

)
,

where

ν′j =






νj inf

{
H

d−j

( j⋂

i=1

ι(ui)

)
, u1, . . . , uj ∈ Y, H

d−j

( j⋂

i=1

ι(ui)

)
> 0

}
, νj > 0,

νj sup

{
H

d−j

( j⋂

i=1

ι(ui)

)
, u1, . . . , uj ∈ Y, H

d−j

( j⋂

i=1

ι(ui)

)
> 0

}
, νj < 0,

and T =
∫
[0,b]d

χ(z) dz. We first set the last d − c summing variables to zero and

then sum only over the summands where all of the summing variables have the same

value. It can be proven (e.g. by using ratio test), that the sum in (4) is divergent,

because ν′j
(
c
j

)
> 0 at the highest power in the exponential. Therefore p 6∈ L1(Pηa) in

this case. On the other hand, the non-positivity of parameter ν implies p ∈ L2(Pηa),

which finally leads to νl 6 0, l > 2 ⇐⇒ p ∈ L2(Pηa).

R em a r k 6. Consider the process µa with density p(x) = ca exp
( d∑
i=1

νiGi(x)
)
,

νl 6 0, l > 2. Assume there is c > 2, νc < 0 and select minimal such c. Then using

similar techniques as in the proof of Lemma 1 and Lemma 2 we can show that there

exist R > 0, S > 0, a0 > 1 such that
∣∣∣̺p(x1, . . . , xp, µa)− lim

a→∞
̺p(x1, . . . , xp, µ

(c)
a )

∣∣∣ < Re−Sa, a > a0,

which leads to the same asymptotic distribution of statistics (G̃1(µa), . . . , G̃d(µa))

as (G̃1(µ
(c)
a ), . . . , G̃d(µ

(c)
a )).
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3. Proof of the central limit theorem

P r o o f of Theorem 1. It holds (see [1], Theorem 3) that

EGj(µ
(c)
a ) =

aj

j!

∫

Y j

H
d−j

( j⋂

i=1

ι(ui)

)
̺j(u1, . . . , uj, µ

(c)
a )λj(d(u1, . . . , uj)),(5)

E

c−1∏

j=1

G
mj

j (µ(c)
a ) =

∑

σ∈Π
(m1,...,mc−1)

1,...,c−1

c−1∏

j=1

1

j!mj
a|σ|

∫

Y |σ|

(c−1⊗

j=1

(
H

d−j)⊗tj

)

σ

(6)

× (u1, . . . , u|σ|)̺|σ|(u1, . . . , u|σ|, µ
(c)
a )λ|σ|(d(u1, . . . , u|σ|)).

We can also get a relation for joint moments of centered random variables

(7) E

c−1∏

j=1

G̃
mj

j (µ(c)
a ) =

1

aM
E

c−1∏

j=1

(Gj(µ
(c)
a )− EGj(µ

(c)
a ))mj

=
1

aM

m1∑

i1=0

. . .

mc−1∑

ic−1=0

(
m1

i1

)
. . .

(
mc−1

ic−1

)
(−1)

∑c−1
j=1 ij

× E

(c−1∏

j=1

G
mj−ij
j (µ(c)

a )

) c−1∏

j=1

(EGj(µ
(c)
a ))ij ,

where
c−1∑
j=1

(j − 1
2 )mj = M .

Firstly we calculate expectations of the U-statistics. Using Lemma 3, we obtain

EGj(µ
(c)
a )

aj
→

1

j!

∫

Y j
c−1

H
d−j

( j⋂

i=1

ι(ui)

)
λj(d(u1, . . . , uj)) =

1

dj
Ij

(
c− 1

j

)
,

where
(
c−1
j

)
is the number of combinations how to select distinct j orientations from

c− 1 and j! is the number of their allocations into the j positions, dj is the number

of all j-selections of d orientations. The value Ij is an integral of the Hausdorff

measure of the intersection of j facets with distinct orientations. It does not depend

on the currently selected orientations, they only need to be distinct, otherwise Ij
would be 0, because only non-parallel facets intersect.

Using Lemma 1 for j > c, we have that ̺j(u1, . . . , uj , µ
(c)
a ) tends to zero at ex-

ponential rate, and therefore lim
a→∞

aj̺j(u1, . . . , uj , µ
(c)
a ) = 0. Moreover, the limit

and the integral can be interchanged by using Lebesgue’s dominated convergence

theorem and we obtain

Gj(µ
(c)
a )

L1

−→ 0, c ∈ {2, . . . , d}, j > c.

Therefore, we only need to investigate the U-statistics of order lower than c.
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Secondly we calculate all joint moments. To do this we need to first use formula

(7) and Lemma 3—we use the limit values of the correlation function, which we

justify later. To describe the relation between the original formula and the formula

with the correlation function replaced by its limit value we use the symbol ≃:

(c−1∏

j=1

j!mj

)
E

(c−1∏

j=1

G
mj−ij
j (µ(c)

a )

) c−1∏

j=1

(EGj(µ
(c)
a ))ij

≃
c−1∏

j=1

(∫

Y j
c−1

H
d−j

( j⋂

i=1

ι(ui)

)
λj(d(u1, . . . , uj))

)ij ∑

σ∈Π
(m1−i1,...,mc−1−ic−1)

1,...,c−1

a|σ|+
∑c−1

j=1 jij

×

∫

Y
|σ|
c−1

(c−1⊗

j=1

((H
d−j

)⊗(mj−ij))

)

σ

(u1, . . . , u|σ|)λ
|σ|(d(u1, . . . , u|σ|)).

We are interested only in terms with power higher than or equal to M , because

the other terms will tend to zero with increasing a, i.e., partitions fulfilling condition

|σ| > M −
c−1∑
j=1

ijj. Also, we do not have to examine odd moments, i.e., those with
c−1∑
j=1

mj odd, because there is no summand with the power of a matching M in the

denominator, thus asymptotically they can only be zero or infinite. Therefore, if we

prove that all even moments tend to some finite value, then all odd moments tend

to zero.

Select s = (s1, . . . , sc−1), so that mi > si > 0, i ∈ [c − 1], ∃ j ∈ [c − 1], mj > sj ,

choose any partition σs ∈ Πs

1,...,c−1 fulfilling conditions |σs| > M −
c−1∑
j=1

ijj and

S(σs) = 0, i.e., each block of π is connected to any other block of π by some block

of s. Then for t = (t1, . . . , tc−1), mi > ti > si, i ∈ [c− 1], ∃ j ∈ [c− 1], tj > sj there

are partitions σt ∈ Πt

1,...,c−1, which have only additional singleton rows compared to

σs, S(σt) =
c−1∑
i=1

(ti − si), |σt| − |σs| =
c−1∑
i=1

(ti − si)i and it holds that

a|σt|

∫

Y
|σt|
c−1

(c−1⊗

j=1

(
H

d−j)⊗tj

)

σt

(u1, . . . , u|σt|)λ
|σt|(d(u1, . . . , u|σt|))

= a|σs|

∫

Y
|σs|
c−1

(c−1⊗

j=1

(
H

d−j)⊗sj

)

σs

(u1, . . . , u|σs|)λ
|σs|(d(u1, . . . , u|σs|))

×
c−1∏

j=1

(
aj

∫

Y j
c−1

H
d−j

( j⋂

i=1

ι(ui)

)
λj(d(u1, . . . , uj))

)tj−sj

,
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because we can separate the singleton rows corresponding to the functions H
k
in the

tensor product, which can be integrated separately, because they do not have any

common variables with the other functions in the tensor product and the integral is

equal to the expectation of U-statistic. We can see that all summands corresponding

to any of the partitions σt in the evaluation of (7) contain a common term

Θ = a|σs|

∫

Y
|σs|
c−1

(c−1⊗

j=1

(
H

d−j)⊗sj

)

σs

(u1, . . . , u|σs|)λ
|σs|(d(u1, . . . , u|σs|))

×
c−1∏

j=1

(
aj

∫

Y j
c−1

H
d−j

( j⋂

i=1

ι(ui)

)
λj(d(u1, . . . , uj))

)mj−sj

and then we sum over all such partitions σt:

Θ

m1∑

i1=s1

. . .

mc−1∑

ic−1=sc−1

(
m1

i1

)
. . .

(
mc−1

ic−1

)(
i1
s1

)
. . .

(
ic−1

sc−1

)
(−1)

∑c−1
j=1 ij

= Θ(−1)
∑c−1

j=1 sj

(
m1

s1

)
. . .

(
mc−1

sc−1

)m1−s1∑

i1=0

. . .

mc−1−sc−1∑

ic−1=0

(
m1 − s1

i1

)
. . .

×

(
mc−1 − sc−1

ic−1

)
(−1)

∑c−1
j=1 ij = 0,

where we use the binomial theorem for summing with necessary condition
c−1∑
j=1

sj <
c−1∑
j=1

mj and
(
mj

ij

)
are original coefficients from formula (7) and

(
ij
sj

)
is the number of

options how to select additional singleton rows.

Therefore all partitions with any singleton rows or containted within Πs

1,...,c−1,

s < m = (m1, . . . ,mc−1) cancel each other out. But we have to take into account

that we have carried out the calculation with the limit values of correlation functions

and all the integrals are multiplied by a in polynomial, thus we have to deal with

the speed of convergence. Consider

N∑

i=1

apΥi

∫

Y p

(c−1⊗

j=1

(
H

d−j)⊗tj

)

p

(u1, . . . , up)̺i,p(u1, . . . , up, µ
(c)
a )λp(d(u1, . . . , up)),

where

Υi, tj ∈ N
0, ̺i,p(u1, . . . , up, µ

(c)
a ) =

(⊗

J∈σi

̺|J|(·, µ
(c)
a )

)
(u1, . . . , up), σi ∈ Π̃p,
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and ̺i,p is such that |̺i,p(u1, . . . , up, µ
(c)
a )− ̺i,p| < Re−Sa for some R,S > 0 and

N∑

i=1

apΥi

∫

Y p

(c−1⊗

j=1

(
H

d−j)⊗tj

)

p

(u1, . . . , up)̺i,pλ
p(d(u1, . . . , up)) = 0.

For practical purposes we omit variables u1, . . . , up from the following formulas and

it holds that

ap
∣∣∣∣
N∑

i=1

Υi

∫

Y p

(c−1⊗

j=1

(
H

d−j)⊗tj

)

p

(̺i,p(·, µ
(c)
a )− ̺i,p) dλ

p

∣∣∣∣

6 ap
∣∣∣∣
N∑

i=1

Υi

∫

Y p

(c−1⊗

j=1

(
H

d−j)⊗tj

)

p

|̺i,p(·, µ
(c)
a )− ̺i,p| dλ

p

∣∣∣∣

6 apRe−Sa

∣∣∣∣
N∑

i=1

Υi

∫

Y p

(c−1⊗

j=1

(
H

d−j)⊗tj

)

p

dλp

∣∣∣∣ → 0.

Now we are left only with partitions σ which do not contain any pure singleton rows.

All of these partitions are contained in Πm

1,...,c−1. These partitions have each row

connected exactly to one other row by one block of two elements in σ (|σ| = M) and

therefore, if we omit all the mentioned partitions, then

c−1∏

j=1

j!mj E

(c−1∏

j=1

G
mj−ij
j (µ(c)

a )

) c−1∏

j=1

(EGj(µ
(c)
a ))ij

≃
2∑

k
(2)
1 ,...,k

(2)
m2

=1

. . .
c−1∑

k
(c−1)
1 ,...,k

(c−1)
mc−1

=1

∑

σ∈Π̃K , J∈σ : |J|=2

∏

J={b1,b2}∈σ

aτ(b1)+τ(b2)−1

×

∫

Y
τ(b1)+τ(b2)−1

c−1

H
d−τ(b1)

(τ(b1)⋂

i=1

ι(xi)

)
H

d−τ(b2)

(τ(b2)−1⋂

i=1

ι(xτ(b1)+i) ∩ ι(x1)

)

× λτ(b1)+τ(b2)−1(d(x1, . . . , xτ(b1)+τ(b2)−1)),

τ(s) = max
j∈[c−1]

{j−1∑

i=1

mi < s

}
, K =

c−1∑

j=1

mj ,

where we sum first over all possible selections of common elements among the parti-

tions and then over all possible pairings of partition rows, we also divide the integral

into several parts, where each part consists only of elements which are in the same

block of a partition. Function τ connects each row of a partition to its length. We
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have

∫

Y
τ(b1)+τ(b2)−1
c−1

H
d−τ(b1)

(τ(b1)⋂

i=1

ι(xi)

)
(8)

×H
d−τ(b2)

(τ(b2)−1⋂

i=1

ι(xτ(b1)+i) ∩ ι(x1)

)
λτ(b1)+τ(b2)−1(d(x1, . . . , xτ(b1)+τ(b2)−1))

=
(c− 1)(τ(b1)− 1)!(τ(b2)− 1)!Iτ(b1)τ(b2)

(
c−2

τ(b1)−1

)(
c−2

τ(b2)−1

)

dτ(b1)+τ(b2)−1
,

2∑

k
(2)
1 ,...,k

(2)
m2

=1

. . .

c−1∑

k
(c−1)
1 ,...,k

(c−1)
mc−1

=1

1 =

c−1∏

j=1

jmj ,(9)

where c− 1 is the number of choices of the one common facet orientation,
(

c−2
τ(b1)−1

)
,(

c−2
τ(b2)−1

)
are the numbers of combinations how to select the remaining distinct ori-

entations of the rest of the facet orientations in the first and the second function in

the integrand and (τ(b1)− 1)!, (τ(b2)− 1)! are the numbers of their allocations into

τ(b1)− 1 and τ(b2)− 1 positions, dτ(b1)+τ(b2)−1 is the (τ(b1)+ τ(b2)− 1)-selection of

d orientations (even non-distinct ones) and Iτ(b1)τ(b2) is the integral over facets with

fixed orientations over the space of the facet centres. Then using (8) and (9)

E

(c−1∏

j=1

G
mj−ij
j (µ(c)

a )

) c−1∏

j=1

(EGj(µ
(c)
a ))ij

≃
(a
d

)M ∑

σ∈Π̃K ,J∈σ : |J|=2

2∑

k
(2)
1 ,...,k

(2)
m2

=1

. . .

c−1∑

k
(c−1)
1 ,...,k

(c−1)
mc−1

=1

∏

J={b1,b2}∈σ

c−1∏

j=1

1

j!mj

× (τ(b1)− 1)!(τ(b2)− 1)!(c− 1)Iτ(b1)τ(b2)

(
c− 2

τ(b1)− 1

)(
c− 2

τ(b2)− 1

)

=
(a
d

)M ∑

σ∈Π̃K , J∈σ : |J|=2

∏

J={b1,b2}∈σ

(c− 1)Iτ(b1)τ(b2)

(
c− 2

τ(b1)− 1

)(
c− 2

τ(b2)− 1

)
,

because the factorial terms (τ(b1)− 1)!(τ(b2)− 1)! and the sums cancel out with the

term
∏

1/j!mj . Therefore, we have

E

c−1∏

j=1

G̃
mj

j (µ(c)
a ) ≃

∑

σ∈Π̃K ,J∈σ : |J|=2

∏

J={b1,b2}∈σ

×
(c− 1)Iτ(b1)τ(b2)

dτ(b1)+τ(b1)−1

(
c− 2

τ(b1)− 1

)(
c− 2

τ(b2)− 1

)
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and as a special case we get

EG̃i(µ
(c)
a )G̃j(µ

(c)
a ) ≃

(c− 1)Iij
di+j−1

(
c− 2

i− 1

)(
c− 2

j − 1

)
.

Now consider the vector of multivariate normal distribution (X1, . . . , Xd) ∼ N(0,Σ).

Then for any joint moment we have

E

d∏

j=1

X
mj

j =
∑

σ∈Π̃K ,J∈σ : |J|=2

∏

J={b1,b2}∈σ

EXτ(b1)Xτ(b2).

We can see that asymptotically the distribution of statistics has the property of nor-

mal distribution, i.e., joint moments of centered variables are equal to the sum over

all pairs of unordered random variables and this implies the central limit theorem,

because normal distribution is defined by its moments, see [2], Theorem 30.2.

There is only one remaining statement to prove:

Gj(µ
(c)
a )

aj
L2

−→
Ij
dj

(
c− 1

j

)
, c ∈ {2, . . . , d}, j < c.

The first moment of the random variable on the left-hand side tends to the right-

hand side and the variance tends to zero as can be seen from the proof of the central

limit theorem. �

4. Proofs of lemmas

P r o o f of Lemma 1. First consider the submodel µ
(c)
a and facets x1, . . . , xp with

k = p 6 c distinct orientations. Moreover, without loss of generality we consider

orientations e1, . . . , ep, because if we apply rotations from Remark 3, then the value

of the correlation function does not change. It holds that

̺p(x1, . . . , xp, µ
(c)
a )

=

∞∑
n=0

an

n!

∫
Y n exp(νcGc{u1, . . . , un, x1, . . . , xp})λn(d(u1, . . . , un))

∞∑
n=0

an

n!

∫
Y n exp(νcGc{u1, . . . , un})λn(d(u1, . . . , un))

.

We can obtain bounds for this expression by using the bounds for the volumes of

intersection of facets

bd−c 6 H
d−c

( c⋂

i=1

yi

)
6 (2b)d−c
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as follows:

(10)

∞∑
n=0

(aT/d)n

n!

∑
n1+...+nd=n

(
n

n1,...,nd

)
exp(νc(2b)

d−cRc,p(p, d,n(d)))

∞∑
n=0

(aT/d)n

n!

∑
n1+...+nd=n

(
n

n1,...,nd

)
exp(νcbd−cRc,0(0, d,n(d)))

6 ̺p(x1, . . . , xp, µ
(c)
a )

6

∞∑
n=0

(aT/d)n

n!

∑
n1+...+nd=n

(
n

n1,...,nd

)
exp(νcb

d−cRc,p(p, d,n(d)))

∞∑
n=0

(aT/d)n

n!

∑
n1+...+nd=n

(
n

n1,...,nd

)
exp(νc(2b)d−cRc,0(0, d,n(d)))

,

where T =
∫
[0,b]d

χ(z) dz, ni are the numbers of facets among u1, . . . , un with orien-

tations ei, i = 1, . . . , d and n
(d) = (n1, . . . , nd). Furthermore, we will make use of

the definition of Rc,p(q, d,n(d)), because specially Rc,0(0, d,n(d)) is the total number

of intersections of all c-tuples of the facets among u1, . . . , un and Rc,p(p, d,n(d)) is

the total number of intersections of all c-tuples of the facets u1, . . . , un, x1, . . . , xp.

Then we substitute aT/d for α, extend both fractions by e−α(c−1) and we get in

the case of the lower bound of (10)

∞∑
n1=0

. . .
∞∑

nd=0

αn1+...+nd

n1!...nd!
exp(νc(2b)

d−cRc,p(p, d,n(d))− α(c− 1))

∞∑
n1=0

. . .
∞∑

nd=0

αn1+...+nd

n1!...nd!
exp(νcbd−cRc,0(0, d,n(d))− α(c− 1))

and in the case of the upper bound of (10)

∞∑
n1=0

. . .
∞∑

nd=0

αn1+...+nd

n1!...nd!
exp(νcb

d−cRc,p(p, d,n(d))− α(c− 1))

∞∑
n1=0

. . .
∞∑

nd=0

αn1+...+nd

n1!...nd!
exp(νc(2b)d−cRc,0(0, d,n(d))− α(c− 1))

.

Using Lemma 2 we get the limit of the lower and upper bound in the same form(
d−p

d−c+1

)
/
(

d
d−c+1

)
=

(
d−k

d−c+1

)
/
(

d
d−c+1

)
. For d > p = k > c we can get an upper bound

in (10) by using p = c. This upper bound tends to zero.

Now consider more than one facet with the same orientation among x1, . . . xp and

with k < c distinct orientations, which are without loss of generality set to e1, . . . , ek
and the maximum number of facets with the same orientation is κ. Then we can
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bound the correlation function in the following way:

∞∑
n=0

(aT/d)n

n!

∑
n1+...+nd=n

(
n

n1,...,nd

)
exp(νcκ

d(2b)d−cRc,k(k, d,n(d)))

∞∑
n=0

(aT/d)n

n!

∑
n1+...+nd=n

(
n

n1,...,nd

)
exp(νcbd−cRc,0(0, d,n(d)))

6 ̺p(x1, . . . , xp, µ
(c)
a )

6

∞∑
n=0

(aT/d)n

n!

∑
n1+...+nd=n

(
n

n1,...,nd

)
exp(νcb

d−cRc,k(k, d,n(d)))

∞∑
n=0

(aT/d)n

n!

∑
n1+...+nd=n

(
n

n1,...,nd

)
exp(νcκd(2b)d−cRc,0(0, d,n(d)))

.

These bounds lead to expressions in the same form as in the case of different

orientations and therefore we proceed in the same way and get the value of the limit(
d−k

d−c+1

)
/
(

d
d−c+1

)
. For d > k > c we need only the lower bound for the number

of intersections in the form Rc,k(k, d,n(d)), which forms an upper bound for the

correlation function. This upper bound tends to zero.

Bounds for the numerator and denominator of the correlation function converge

to their limits with at least exponential rate and we can also see that the upper

bounds can be selected to depend only on ν, s and c, therefore they do not depend

on currently selected facets x1, . . . , xp in the argument of the correlation function.

Rate of convergence can be extended to the whole fraction, if we denote by A(a)

the value of the numerator and by B(a) the value of the denominator on the left-

hand side in (3), and by A and B the limits of the numerator and denominator on

the right-hand side in (3), respectively, then there exist R1, R2, S1, S2 > 0, such that

for every a > 1 we have

|A(a) −A| < R1Ae
−S1a, |B(a)−B| < R2Be−S2a.

If we choose a0 = max{− 1
S2

log 1
2R2

, 1}, R = 4max{R1, R2}, and S = min{S1, S2},

then for a > a0 we get the bounds

A(a)

B(a)
−

A

B
6

A

B

R1e
−S1a +R2e

−S2a

1−R2e−S2a
6

A

B
Re−Sa,

A(a)

B(a)
−

A

B
> −

A

B

R1e
−S1a +R2e

−S2a

1 +R2e−S2a
> −

A

B
Re−Sa.

�

P r o o f of Lemma 2. We set

Ip(a, c, t, s) =

∞∑

n1=0

. . .

∞∑

ns=0

an1+...+ns

n1! . . . ns!
exp(νRc,p(t, s,n(s))− a(c− 1)).

437



First we calculate the values of the limit by calculating the sum over (n1 > 0∧ . . .∧

nd > 0) to show that this value tends to zero as a tends to infinity. We show this only

for p = 0 because for p > 0, we get the upper bound using p = 0, because Rc,p > Rc,0

and the sum is non-negative. In the following we use the Chernoff bound for tail

probabilities of the Poisson distribution

m∑

l=0

sl

l!
6

(es)m

mm
, m < s.

1. First we assume that all the summing variables are between 0 and a2/3, i.e.,

a2/3 > n1 > 0 ∧ . . . ∧ a2/3 > nd > 0. Then

a2/3∑

n1>0

. . .

a2/3∑

nd>0

an1+...+nd

n1! . . . nd!
exp(νRc,0(0, d,n(d))− a(c− 1))

6

a2/3∑

n1>0

. . .
a2/3∑

nd>0

an1+...+nd

n1! . . . nd!
exp(−a(c− 1)) 6

(
(ea)da

2/3

(a2/3)da2/3

)
e−a(c−1) → 0,

where we used d times the Chernoff bound.

2. Now we assume that one of the summing variables is greater than a2/3, without

loss of generality we select nd, i.e., a
2/3 > n1 > 0 ∧ . . . ∧ a2/3 > nd−1 > 0 ∧

nd > a2/3. Then

a2/3∑

n1>0

. . .

a2/3∑

nd−1>0

∞∑

nd>a2/3

an1+...+nd

n1! . . . nd!
exp(νRc,0(0, d,n(d))− a(c− 1))

6

a2/3∑

n1>0

. . .

a2/3∑

nd−1>0

∞∑

nd=0

an1+...+nd

n1! . . . nd!
exp(νnd − a(c− 1))

=
a2/3∑

n1>0

. . .
a2/3∑

nd−1>0

an1+...+nd−1

n1! . . . nd−1!
exp(aeν − a(c− 1))

6
(ea)(d−1)a2/3

(a2/3)(d−1)a2/3
exp(aeν − a(c− 1)) → 0,

because eν − (c− 1) < 0.
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3. When at least two of the summing variables are greater than a2/3, without loss

of generality we select nd−1 and nd, then we have

a2/3∑

n1>0

. . .

a2/3∑

nd−2>0

∞∑

nd−1>a2/3

∞∑

nd>a2/3

an1+...+nd

n1! . . . nd!
exp(νRc,0(0, d,n(d))− a(c− 1))

6

a2/3∑

n1>0

. . .

a2/3∑

nd−2>0

∞∑

nd−1>a2/3

∞∑

nd>a2/3

an1+...+nd

n1! . . . nd!
exp(νa4/3 − a(c− 1))

6 exp(νa4/3 + a(d+ 1− c)) → 0.

4. The same applies to the case where more than two variables are greater

than a2/3, because we are able to find terms with higher power of a in the

exponential.

Therefore, we need only to examine the remaining terms where at least one of the

variables is equal to zero, thus we replace Ip(a, c, p, d) by d sums, where one variable

is set to zero

(11) Ip(a, c, p, d) ≈ pIp(a, c, p− 1, d− 1) + (d− p)Ip(a, c, p, d− 1),

where ≈ is the equality after omitting the summands which tend to zero on the

left-hand side, Ip(a, c, p − 1, d − 1) is the sum after setting to zero one of the vari-

ables n1, . . . , np, I
p(a, c, p, d− 1) is the sum after setting to zero one of the variables

np+1, . . . , nd and the coefficients are the counts of possible selections of these vari-

ables. It can be shown that

Rc,p(t, c− 1,nc−1)

{
= 0, t = p,

> nc−1, t < p,

and therefore, we have

(12) lim
a→∞

Ip(a, c, t, c− 1) =

{
0, t < p,

1, t = p.

Because the series on the right-hand side of (11) is in the same form as the original

one and we can again sum only over the indices where at least one is equal to zero,

thus we repeat (d− c+ 1) times the step in (11) and we get

(13) Ip(a, c, p, d) ≈
d−c+1∑

j=0

cjI
p(a, c, p− j, c− 1),
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where cj ∈ N. All summands tend to zero with one exception of c0I
p(a, c, p, c − 1)

with

(14) c0 =





(d− p)!

(c− 1− p)!
, c > p,

0, c = p,

which is the number of all selections of variables set to zero from np+1, . . . , nd in

d− c+1 steps. The overall speed of convergence is implied by the convergence speed

of every part of the sum, which converges to its limit at least at exponential rate. �

P r o o f of Lemma 3. The limit of the correlation function depends only on the

number k of distinct orientations among the facets (u1, . . . , u|σ|), then the correlation

function tends to
(

d−k
d−c+1

)
/
(

d
d−c+1

)
and thus we can write

∫

Y |σ|

( d⊗

j=1

(
H

d−j)⊗tj

)

σ

(u1, . . . , u|σ|)̺|σ|(u1, . . . , u|σ|, µ
(c)
a )λ|σ|(d(u1, . . . , u|σ|))

=

d∑

k=1

(
d

k

)∫

(Y |σ|)[k]

( d⊗

j=1

((H
d−j

)⊗mj )

)

σ

(u1, . . . , u|σ|)

× ̺|σ|(u1, . . . , u|σ|, µ
(c)
a )λ|σ|(d(u1, . . . , u|σ|))

6

d∑

k=1

(
d

k

)∫

(Y |σ|)[k]

( d⊗

j=1

(
H

d−j)⊗tj

)

σ

(u1, . . . , u|σ|)

(
d−k

d−c+1

)
(

d
d−c+1

)λ|σ|(d(u1, . . . , u|σ|))

+

d∑

k=1

(
d

k

)∫

(Y |σ|)[k]

( d⊗

j=1

((H
d−j

)⊗mj )

)

σ

(u1, . . . , u|σ|)

×

∣∣∣∣

(
d−k

d−c+1

)
(

d
d−c+1

) − ̺|σ|(u1, . . . , u|σ|, µ
(c)
a )

∣∣∣∣λ
|σ|(d(u1, . . . , u|σ|))

6

c−1∑

k=1

(
c− 1

k

)∫

(Y |σ|)[k]

( d⊗

j=1

(
H

d−j)⊗tj

)

σ

(u1, . . . , u|σ|)λ
|σ|(d(u1, . . . , u|σ|))

+

d∑

k=1

(
d

k

)∫

(Y |σ|)[k]

( d⊗

j=1

(
H

d−j)⊗tj

)

σ

(u1, . . . , u|σ|)λ
|σ|(d(u1, . . . , u|σ|))Re−Sa,

where (Y |σ|)[k] is a subspace of Y
|σ|, where facets u1, . . . , u|σ| use orientations

e1, . . . , ek (each orientation is used at least by one of the facets),
(
d
k

)
is the number of

possible selections of orientations used. We have an upper bound for the expression

in the absolute value and we can get a lower bound in the same way. �
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