28 research outputs found

    Miyabeacin: A new cyclodimer presents a potential role for willow in cancer therapy

    Get PDF
    Willow (Salix spp.) is well known as a source of medicinal compounds, the most famous being salicin, the progenitor of aspirin. Here we describe the isolation, structure determination, and anti-cancer activity of a cyclodimeric salicinoid (miyabeacin) from S. miyabeana and S. dasyclados. We also show that the capability to produce such dimers is a heritable trait and how variation in structures of natural miyabeacin analogues is derived via cross-over Diels-Alder reactions from pools of ortho-quinol precursors. These transient ortho-quinols have a role in the, as yet uncharacterised, biosynthetic pathways around salicortin, the major salicinoid of many willow genotypes

    Breeding progress and preparedness for mass‐scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar

    Get PDF
    UK: The UK‐led miscanthus research and breeding was mainly supported by the Biotechnology and Biological Sciences Research Council (BBSRC), Department for Environment, Food and Rural Affairs (Defra), the BBSRC CSP strategic funding grant BB/CSP1730/1, Innovate UK/BBSRC “MUST” BB/N016149/1, CERES Inc. and Terravesta Ltd. through the GIANT‐LINK project (LK0863). Genomic selection and genomewide association study activities were supported by BBSRC grant BB/K01711X/1, the BBSRC strategic programme grant on Energy Grasses & Bio‐refining BBS/E/W/10963A01. The UK‐led willow R&D work reported here was supported by BBSRC (BBS/E/C/00005199, BBS/E/C/00005201, BB/G016216/1, BB/E006833/1, BB/G00580X/1 and BBS/E/C/000I0410), Defra (NF0424) and the Department of Trade and Industry (DTI) (B/W6/00599/00/00). IT: The Brain Gain Program (Rientro dei cervelli) of the Italian Ministry of Education, University, and Research supports Antoine Harfouche. US: Contributions by Gerald Tuskan to this manuscript were supported by the Center for Bioenergy Innovation, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, under contract number DE‐AC05‐00OR22725. Willow breeding efforts at Cornell University have been supported by grants from the US Department of Agriculture National Institute of Food and Agriculture. Contributions by the University of Illinois were supported primarily by the DOE Office of Science; Office of Biological and Environmental Research (BER); grant nos. DE‐SC0006634, DE‐SC0012379 and DE‐SC0018420 (Center for Advanced Bioenergy and Bioproducts Innovation); and the Energy Biosciences Institute. EU: We would like to further acknowledge contributions from the EU projects “OPTIMISC” FP7‐289159 on miscanthus and “WATBIO” FP7‐311929 on poplar and miscanthus as well as “GRACE” H2020‐EU.3.2.6. Bio‐based Industries Joint Technology Initiative (BBI‐JTI) Project ID 745012 on miscanthus.Peer reviewedPostprintPublisher PD

    Dry matter losses and methane emissions during wood chip storage: the impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat

    Get PDF
    A life cycle assessment (LCA) approach was used to examine the greenhouse gas (GHG) emissions and energy balance of short rotation coppice (SRC) willow for heat production. The modelled supply chain includes cutting multiplication, site establishment, maintenance, harvesting, storage, transport and combustion. The relative impacts of dry matter losses and methane emissions from chip storage were examined from a LCA perspective, comparing the GHG emissions from the SRC supply chain with those of natural gas for heat generation. The results show that SRC generally provides very high GHG emission savings of over 90 %. The LCA model estimates that a 1, 10 and 20 % loss of dry matter during storage causes a 1, 6 and 11 % increase in GHG emissions per MWh. The GHG emission results are extremely sensitive to emissions of methane from the wood chip stack: If 1 % of the carbon within the stack undergoes anaerobic decomposition to methane, then the GHG emissions per MWh are tripled. There are some uncertainties in the LCA results, regarding the true formation of methane in wood chip stacks, non-CO2 emissions from combustion, N2O emissions from leaf fall and the extent of carbon sequestered under the crop, and these all contribute a large proportion of the life cycle GHG emissions from cultivation of the cro

    Culicoides huaynacapaci, a new species from the Department of Cajamarca, Peru (Diptera, Ceratopogonidae)

    No full text
    A new species of Culicoides of the subgenus Mataemyia Vargas, Culicoides huaynacapaci Felippe-Bauer, is described and illustrated based on female and male specimens collected biting humans in Department of Cajamarca, in Peruvian Amazonia. The new species is compared with its similar congener C. albuquerquei Wirth & Blanton.<br>Uma nova espĂ©cie de Culicoides do subgĂȘnero Mataemyia Vargas, Culicoides huaynacapaci Felippe-Bauer, Ă© descrita e ilustrada baseada em exemplares fĂȘmeas e machos coletados picando humanos no Estado de Cajamarca, na AmazĂŽnia Peruana. A nova espĂ©cie Ă© comparada com a espĂ©cie afim, C. albuquerquei Wirth & Blanton

    Steps Toward Determinaton of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. V. Variability of the Ultraviolet Continuum and Emission Lines of NGC 3783

    Get PDF
    We report on the results of intensive ultraviolet spectral monitoring of the Seyfert 1 galaxy NGC 3783. The nucleus of NGC 3783 was observed with the International Ultraviolet Explorer satellite on a regular basis for a total of 7 months, once every 4 days for the first 172 days and once every other day for the final 50 days. Significant variability was observed in both continuum and emission-line fluxes. The light curves for the continuum fluxes exhibited two well-defined local minima or dips, the first lasting ≀20 days and the second ≀ 4 days, with additional episodes of relatively rapid flickering of approximately the same amplitude. As in the case of NGC 5548 (the only other Seyfert galaxy that has been the subject of such an intensive, sustained monitoring effort), the largest continuum variations were seen at the shortest wavelengths, so that the continuum became harder when brighter. The variations in the continuum occurred simultaneously at all wave-lengths (Δt \u3c 2 days). Generally, the amplitude of variability of the emission lines was lower than (or comparable to) that of the continuum. Apart from Mg II (which varied little) and N v (which is relatively weak and badly blended with Ly∝), the light curves of the emission lines are very similar to the continuum light curves, in each case with a small systematic delay or lag. As for NGC 5548, the highest ionization lines seem to respond with shorter lags than the lower ionization lines. The lags found for NGC 3783 are considerably shorter than those obtained for NGC 5548, with values of (formally) ~0 days for He II + O III] , and ~4 days for Ly∝ and C IV. The data further suggest lags of ~4 days for Si IV + O IV] and 8-30 days for Si III] + C III]. Mg II lagged the 1460 Å continuum by ~9 days, although this result depends on the method of measuring the line flux and may in fact be due to variability of the underlying Fe II lines. Correlation analysis further shows that the power density spectrum contains substantial unresolved power over timescales of ≀ 2 days, and that the character of the continuum variability may change with time
    corecore