13 research outputs found

    Theory, Practice, and the Millennium

    Get PDF
    Walter E. Russell Endowed Chair in Philosophy and Education Lecture 1996-1998: Theory, Practice, and the Millenium The Russell Scholar Symposium: Theory and Practice in Academiahttps://digitalcommons.usm.maine.edu/facbooks/1234/thumbnail.jp

    Characterization of the "deqi" response in acupuncture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acupuncture stimulation elicits <it>deqi</it>, a composite of unique sensations that is essential for clinical efficacy according to traditional Chinese medicine (TCM). There is lack of adequate experimental data to indicate what sensations comprise <it>deqi</it>, their prevalence and intensity, their relationship to acupoints, how they compare with conventional somatosensory or noxious response. The objective of this study is to provide scientific evidence on these issues and to characterize the nature of the <it>deqi phenomenon </it>in terms of the prevalence of sensations as well as the uniqueness of the sensations underlying the <it>deqi </it>experience.</p> <p>Methods</p> <p>Manual acupuncture was performed at LI4, ST36 and LV3 on the extremities in randomized order during fMRI in 42 acupuncture naïve healthy adult volunteers. Non-invasive tactile stimulation was delivered to the acupoints by gentle tapping with a von Frey monofilament prior to acupuncture to serve as a sensory control. At the end of each procedure, the subject was asked if each of the sensations listed in a questionnaire or any other sensations occurred during stimulation, and if present to rate its intensity on a numerical scale of 1–10. Statistical analysis including paired t-test, analysis of variance, Spearman's correlation and Fisher's exact test were performed to compare responses between acupuncture and sensory stimulation.</p> <p>Results</p> <p>The <it>deqi </it>response was elicited in 71% of the acupuncture procedures compared with 24% for tactile stimulation when thresholded at a minimum total score of 3 for all the sensations. The frequency and intensity of individual sensations were significantly higher in acupuncture. Among the sensations typically associated with <it>deqi</it>, aching, soreness and pressure were most common, followed by tingling, numbness, dull pain, heaviness, warmth, fullness and coolness. Sharp pain of brief duration that occurred in occasional subjects was regarded as inadvertent noxious stimulation. The most significant differences in the <it>deqi </it>sensations between acupuncture and tactile stimulation control were observed with aching, soreness, pressure and dull pain. Consistent with its prominent role in TCM, LI4 showed the most prominent response, the largest number of sensations as well as the most marked difference in the frequency and intensity of aching, soreness and dull pain between acupuncture and tactile stimulation control. Interestingly, the dull pain generally preceded or occurred in the absence of sharp pain in contrast to reports in the pain literature. An approach to summarize a sensation profile, called the <it>deqi composite</it>, is proposed and applied to explain differences in <it>deqi </it>among acupoints.</p> <p>Conclusion</p> <p>The complex pattern of sensations in the <it>deqi </it>response suggests involvement of a wide spectrum of myelinated and unmyelinated nerve fibers, particularly the slower conducting fibers in the tendinomuscular layers. The study provides scientific data on the characteristics of the <it>'deqi' </it>response in acupuncture and its association with distinct nerve fibers. The findings are clinically relevant and consistent with modern concepts in neurophysiology. They can provide a foundation for future studies on the <it>deqi </it>phenomenon.</p

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    Preparation and validation of the first WHO international genetic reference panel for Fragile X syndrome

    Get PDF
    Fragile X syndrome is the most common inherited form of mental retardation. It is caused by expansion of a trinucleotide (CGG)n repeat sequence in the 5′ untranslated region of the FMR1 gene, resulting in promoter hypermethylation and suppression of FMR1 transcription. Additionally, pre-mutation alleles in carrier males and females may result in Fragile X tremor ataxia syndrome and primary ovarian insufficiency, respectively. Fragile X is one of the most commonly requested molecular genetic tests worldwide. Quality assessment schemes have identified a wide disparity in allele sizing between laboratories. It is therefore important that clinical laboratories have access to characterized reference materials (RMs) to aid accurate allele sizing and diagnosis. With this in mind, a panel of genotyping RMs for Fragile X syndrome has been developed, which should be stable over many years and available to all diagnostic laboratories. Immortalized cell lines were produced by Epstein–Barr virus transformation of lymphocytes from consenting patients. Genomic DNA was extracted in bulk and RM aliquots were freeze-dried in glass ampoules. Twenty-one laboratories from seventeen countries participated in a collaborative study to assess their suitability. Participants evaluated the samples (blinded, in triplicate) in their routine methods alongside in-house and commercial controls. The panel of five genomic DNA samples was endorsed by the European Society of Human Genetics and approved as an International Standard by the Expert Committee on Biological Standardization at the World Health Organization

    TRPA1 is required for TGF-β signaling and its loss blocks inflammatory fibrosis in mouse corneal stroma

    No full text
    We examined whether the loss of transient receptor potential ankyrin 1 (TRPA1), an irritant-sensing ion channel, or TRPA1 antagonist treatment affects the severity inflammation and scarring during tissue wound healing in a mouse cornea injury model. In addition, the effects of the absence of TRPA1 on transforming growth factor β1 (TGF-β1)-signaling activation were studied in cell culture. The lack of TRPA1 in cultured ocular fibroblasts attenuated expression of TGF-β1, interleukin-6, and α-smooth muscle actin, a myofibroblast the marker, but suppressed the activation of Smad3, p38 MAPK, ERK, and JNK. Stroma of the healing corneas of TRPA1(-/-) knockout (KO) mice appeared more transparent compared with those of wild-type mice post-alkali burn. Eye globe diameters were measured from photographs. An examination of the corneal surface and eye globes suggested the loss of TRPA1 suppressed post-alkali burn inflammation and fibrosis/scarring, which was confirmed by histology, immunohistochemistry, and gene expression analysis. Reciprocal bone marrow transplantation between mice showed that KO corneal tissue resident cells, but not KO bone marrow-derived cells, are responsible for KO mouse wound healing with reduced inflammation and fibrosis. Systemic TRPA1 antagonists reproduced the KO phenotype of healing. In conclusion, a loss or blocking of TRPA1 in mice reduces inflammation and fibrosis/scarring in the corneal stroma during wound healing following an alkali burn. The responsible mechanism may include the inhibition of TGF-β1-signaling cascades in fibroblasts by attenuated TRPA1 signaling. Inflammatory cells are considered to have a minimum involvement in the exhibition of the KO phenotype after injury
    corecore