736 research outputs found

    Using the health action process approach to predict and improve health outcomesin individuals with type 2 diabetes mellitus

    Get PDF
    Background: The purpose of this study was to explore the predictive utility of the Health Action Process Approach (HAPA) and test a HAPA-based healthy eating intervention, in adults with type 2 diabetes mellitus. Materials and methods: The study employed a prospective, randomized, controlled trial design. The 4-month intervention consisted of self-guided HAPA-based workbooks in addition to two telephone calls to assist participants with the program implementation, and was compared to “treatment as usual”. Participants (n=87) completed health measures (diet, body mass index [BMI], waist circumference, blood pressure, blood glucose levels, lipid levels, and diabetes distress) and HAPA measures prior to the intervention and again upon completion 4 months later. Results: The overall HAPA model predicted BMI, although only risk awareness and recovery self-efficacy were significant independent contributors. Risk awareness, intentions, and self-efficacy were also independent predictors of health outcomes; however, the HAPA did not predict healthy eating. No significant time × condition interaction effects were found for diet or any HAPA outcome measures. Conclusion: Despite the success of HAPA in predicting health outcomes for those with type 2 diabetes mellitus, the intervention was unsuccessful in changing healthy eating or any of the other measured variables, and alternative low-cost health interventions for those with type 2 diabetes mellitus should be explored

    The Marco Gonzalez Maya site, Ambergris Caye, Belize: assessing the impact of human activities by examining diachronic processes at the local scale

    Get PDF
    Research at the Maya archaeological site of Marco Gonzalez on Ambergris Caye in Belize is socio-ecological because human activities have been a factor in the formation and fluctuation of the local marine and terrestrial environments over time. The site is one of many on Belize's coast and cayes that exhibit anomalous vegetation and dark-coloured soils. These soils, although sought for cultivation, are not typical 'Amazonian Dark Earths' but instead are distinctive to the weathering of carbonate-rich anthropogenic deposits. We tentatively term these location-specific soils as Maya Dark Earths. Our research seeks to quantify the role of human activities in long-term environmental change and to develop strategies, specifically Life Cycle Assessment (LCA), that can be applied to environmental impact modelling today

    Macrofossils and pollen representing forests of the pre-Taupo volcanic eruption (c. 1850 yr BP) era at Pureora and Benneydale, central North Island, New Zealand.

    Get PDF
    Micro- and macrofossil data from the remains of forests overwhelmed and buried at Pureora and Benneydale during the Taupo eruption (c. 1850 conventional radiocarbon yr BP) were compared. Classification of relative abundance data separated the techniques, rather than the locations, because the two primary clusters comprised pollen and litter/wood. This indicates that the pollen:litter/wood within-site comparisons (Pureora and Benneydale are 20 km apart) are not reliable. Plant macrofossils represented mainly local vegetation, while pollen assemblages represented a combination of local and regional vegetation. However, using ranked abundance and presence/absence data, both macrofossils and pollen at Pureora and Benneydale indicated conifer/broadleaved forest, of similar forest type and species composition at each site. This suggests that the forests destroyed by the eruption were typical of mid-altitude west Taupo forests, and that either data set (pollen or macrofossils) would have been adequate for regional forest interpretation. The representation of c. 1850 yr BP pollen from the known buried forest taxa was generally consistent with trends determined by modern comparisons between pollen and their source vegetation, but with a few exceptions. A pollen profile from between the Mamaku Tephra (c. 7250 yr BP) and the Taupo Ignimbrite indicated that the Benneydale forest had been markedly different in species dominance compared with the forest that was destroyed during the Taupo eruption. These differences probably reflect changes in drainage, and improvements in climate and/or soil fertility over the middle Holocene

    Climate change reduces resilience to fire in subalpine rainforests

    Get PDF
    Climate change is affecting the distribution of species and the functioning of ecosystems. For species that are slow growing and poorly dispersed, climate change can force a lag between the distributions of species and the geographic distributions of their climatic envelopes, exposing species to the risk of extinction. Climate also governs the resilience of species and ecosystems to disturbance, such as wildfire. Here we use species distribution modelling and palaeoecology to assess and test the impact of vegetation–climate disequilibrium on the resilience of an endangered fire‐sensitive rainforest community to fires. First, we modelled the probability of occurrence of Athrotaxis spp. and Nothofagus gunnii rainforest in Tasmania (hereon “montane rainforest”) as a function of climate. We then analysed three pollen and charcoal records spanning the last 7,500 cal year BP from within both high (n = 1) and low (n = 2) probability of occurrence areas. Our study indicates that climatic change between 3,000 and 4,000 cal year BP induced a disequilibrium between montane rainforests and climate that drove a loss of resilience of these communities. Current and future climate change are likely to shift the geographic distribution of the climatic envelopes of this plant community further, suggesting that current high‐resilience locations will face a reduction in resilience. Coupled with the forecast of increasing fire activity in southern temperate regions, this heralds a significant threat to this and other slow growing, poorly dispersed and fire sensitive forest systems that are common in the southern mid to high latitudes

    First evidence for Wollemi Pine-type pollen (Dilwynites: Araucariaceae) in South America

    Get PDF
    We report the first fossil pollen from South America of the lineage that includes the recently discovered, extremely rare Australian Wollemi Pine, Wollemia nobilis (Araucariaceae). The grains are from the late Paleocene to early middle Eocene Ligorio Márquez Formation of Santa Cruz, Patagonia, Argentina, and are assigned to Dilwynites, the fossil pollen type that closely resembles the pollen of modern Wollemia and some species of its Australasian sister genus, Agathis. Dilwynites was formerly known only from Australia, New Zealand, and East Antarctica. The Patagonian Dilwynites occurs with several taxa of Podocarpaceae and a diverse range of cryptogams and angiosperms, but not Nothofagus. The fossils greatly extend the known geographic range of Dilwynites and provide important new evidence for the Antarctic region as an early Paleogene portal for biotic interchange between Australasia and South America.Mike Macphail, Raymond J. Carpenter, Ari Iglesias, Peter Wil

    Craig Rhos-y-felin: A Welsh bluestone megalith quarry for Stonehenge

    Get PDF
    The long-distance transport of the bluestones from south Wales to Stonehenge is one of the most remarkable achievements of Neolithic societies in north-west Europe. Where precisely these stones were quarried, when they were extracted and how they were transported has long been a subject of speculation, experiment and controversy. The discovery of a megalithic bluestone quarry at Craig Rhos-y-felin in 2011 marked a turning point in this research. Subsequent excavations have provided details of the quarrying process along with direct dating evidence for the extraction of bluestone monoliths at this location, demonstrating both Neolithic and Early Bronze Age activity
    corecore